Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 290: 286-294, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31000049

RESUMO

The aim of this study is to shed light on the evolution of the minor compounds in the corn oil oxidation process, through the information provided by direct immersion-microextraction in solid phase followed by gas chromatography/mass spectrometry (DI-SPME-GC/MS). This methodology enables one, in a single run, to establish the identity and abundance both of original oil minor components, some with antioxidant capacity, and of other compounds coming from both main and minor oil components oxidation. For the first time, some of the compounds formed from oil minor components degradation are proposed as new markers of oil incipient oxidation. Although the study refers to corn oil, the methodology can be applied to any other edible oil and constitutes a new approach to characterizing the oxidation state of edible oils.


Assuntos
Óleo de Milho/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/química , Óleo de Milho/isolamento & purificação , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Oxirredução , Microextração em Fase Sólida , Esqualeno/análise , Esqualeno/metabolismo , Tocoferóis/análise , Tocoferóis/metabolismo
2.
Food Chem ; 221: 1135-1144, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979070

RESUMO

The possibilities offered by a new methodology to determine minor components in edible oils are described. This is based on immersion of a solid-phase microextraction fiber of PDMS/DVB into the oil matrix, followed by Gas Chromatography/Mass Spectrometry. It enables characterization and differentiation of edible oils in a simple way, without either solvents or sample modification. This methodology allows simultaneous identification and quantification of sterols, tocols, hydrocarbons of different natures, fatty acids, esters, monoglycerides, fatty amides, aldehydes, ketones, alcohols, epoxides, furans, pyrans and terpenic oxygenated derivatives. The broad information provided by this methodology is useful for different areas of interest such as nutritional value, oxidative stability, technological performance, quality, processing, safety and even the prevention of fraudulent practices. Furthermore, for the first time, certain fatty amides, gamma- and delta-lactones of high molecular weight, and other aromatic compounds such as some esters derived from cinnamic acid have been detected in edible oils.


Assuntos
Análise de Alimentos/métodos , Óleos de Plantas/química , Óleos de Plantas/normas , Plantas Comestíveis/química , Compostos Orgânicos Voláteis/análise , Ácidos Graxos Voláteis/análise , Análise de Alimentos/instrumentação , Qualidade dos Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos/análise , Indicadores e Reagentes , Monoglicerídeos/análise , Fitosteróis/análise , Solventes , Tocoferóis/análise
3.
Food Chem ; 165: 119-28, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038657

RESUMO

In this study, (1)H Nuclear Magnetic Resonance was used to monitor the evolution of three margarines of varied compositions when submitted to heating at 180°C in an oven with aeration. Heating causes degradation of polyunsaturated acyl groups and this depends not only on their unsaturation degree, but also on the concentration of the different acyl groups. The evolution of monounsaturated groups varies depending on the disappearance rate of the groups with higher unsaturation degree. Heat treatment also causes hydrolysis reactions that lead to a reduction in 1-monoglycerides and an increase in 1,2-diglycerides, especially in the margarines with higher water content, as well as degradation of some vegetable sterols. Different types of aldehydes and epoxides were identified and quantified, above all in the margarine with the highest proportion of polyunsaturated groups, especially linoleic; some of these are toxic, such as 4-hydroxy- and 4,5-epoxy-2-alkenals.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Margarina/análise , Temperatura Alta , Óleos de Plantas
4.
J Agric Food Chem ; 53(4): 1093-101, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15713025

RESUMO

The static headspace composition of sunflower oil throughout the oxidation process at 70 degrees C with circulating air is studied by means of solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC-MS); at the same time the liquid phase of the same oil is studied by means of Fourier transform infrared (FTIR) spectroscopy. Each technique provides complementary information about the process; FITR spectroscopy detects changes in the functional groups of the liquid matrix in a global way and SPME/GC-MS provides information about the different components present in the volatile phase during the oxidation process. Concordance between the timing of the changes produced in both liquid and gaseous phases is observed, as well as agreement and complementarity in the results obtained from both phases. The formation of some well-known genotoxic and cytotoxic oxygenated aldehydes in this process and their presence in the oil headspace are proved.


Assuntos
Aldeídos/análise , Óleos de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA