Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8507, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596065

RESUMO

Sansevieria trifasciata is used as an indoor plant, in traditional medicine and as a fiber source. Here we characterized fibers of two of varieties of S. trifasciata, Lorentii and Hahnii, and report a protocol for their propagation based on indirect shoot organogenesis. Structural and ribbon fibers were scattered within leaf parenchyma when viewed with confocal laser scanning microscopy. Chemical analysis of the fibers by mass spectrometry and high-performance chromatography revealed higher contents of cellulose and xylose in Lorentii than in Hahnii and significant differences for total lignin between both. A protocol for de novo shoot production was then developed using leaf explants. Time-course histological analyses showed that the first events of transdifferentiation were triggered preferentially in cells surrounding fibers and vascular bundles. Callogenesis and shoot performances were quantified for both varieties, and 2,4-D at 2 and 3 mg·L-1 yielded the best results for primary calli induction and fresh calli mass. The length, number, and mass of shoots produced did not differ significantly between the two cultivars. The fast morphogenic response of S. trifasciata to in vitro culture may be useful for mass propagation or other biotechnological purposes such as metabolite production.


Assuntos
Sansevieria , Cromatografia Gasosa-Espectrometria de Massas , Organogênese , Folhas de Planta , Brotos de Planta/fisiologia , Regeneração
2.
Nature ; 498(7452): 94-8, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23665961

RESUMO

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/genética , DNA Intergênico/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenia/genética , Vitis/genética
3.
BMC Plant Biol ; 11: 101, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21639913

RESUMO

BACKGROUND: The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. RESULTS: Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. CONCLUSION: The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously thought to be encoded by bacteria. Supporting physiological data, global gene expression analysis shows that traps significantly over-express genes involved in respiration and that phosphate uptake might occur mainly in traps, whereas nitrogen uptake could in part take place in vegetative parts. Expression of DNA repair and ROS detoxification enzymes may be indicative of a response to increased respiration. Finally, evidence from the bladderwort transcriptome, direct measurement of ROS in situ, and cross-species comparisons of organellar genomes and multiple nuclear genes supports the hypothesis that increased nucleotide substitution rates throughout the plant may be due to the mutagenic action of amplified ROS production.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Genoma de Planta , Magnoliopsida/genética , Brotos de Planta/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Respiração Celular , Reparo do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Plantas/genética , Biblioteca Gênica , Genomas de Plastídeos , Inflorescência/genética , Inflorescência/metabolismo , Magnoliopsida/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Microbiol ; 9: 257, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20003402

RESUMO

BACKGROUND: Pseudomonas syringae pv. phaseolicola is a Gram-negative plant-pathogenic bacterium that causes "halo blight" disease of beans (Phaseolus vulgaris L.). This disease affects both foliage and pods, and is a major problem in temperate areas of the world. Although several bacterial genes have been determined as participants in pathogenesis, the overall process still remains poorly understood, mainly because the identity and function of many of the genes are largely unknown. In this work, a genomic library of P. syringae pv. phaseolicola NPS3121 was constructed and PCR amplification of individual fragments was carried out in order to print a DNA microarray. This microarray was used to identify genes that are differentially expressed when bean leaf extracts, pod extracts or apoplastic fluid were added to the growth medium. RESULTS: Transcription profiles show that 224 genes were differentially expressed, the majority under the effect of bean leaf extract and apoplastic fluid. Some of the induced genes were previously known to be involved in the first stages of the bacterial-plant interaction and virulence. These include genes encoding type III secretion system proteins and genes involved in cell-wall degradation, phaseolotoxin synthesis and aerobic metabolism. On the other hand, most repressed genes were found to be involved in the uptake and metabolism of iron. CONCLUSION: This study furthers the understanding of the mechanisms involved, responses and the metabolic adaptation that occurs during the interaction of P. syringae pv. phaseolicola with a susceptible host plant.


Assuntos
Perfilação da Expressão Gênica , Phaseolus/química , Pseudomonas syringae/genética , Análise por Conglomerados , Meios de Cultura , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Biblioteca Genômica , Ferro/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ornitina/análogos & derivados , Ornitina/metabolismo , Phaseolus/microbiologia , Extratos Vegetais/química , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA