Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37797227

RESUMO

Background: Cannabis sativa is a psychoactive plant indigenous to Central and South Asia, traditionally used both for recreational and religious purposes, in addition to folk medicine. Cannabis is a rich source of natural compounds, the most important of which are commonly known as cannabinoids that cause a variety of effects through interaction with the endocannabinoid system. Materials and Methods: In this study, a high-performance liquid chromatography-ultraviolet/photodiode array (PDA) method was developed and validated for the analysis of 15 cannabinoids in cannabis plant materials and cannabis-based marketed products. These cannabinoids are cannabidivarinic acid, cannabidivarin, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, delta-9-tetrahydrocannabivarin, delta-9-tetrahydrocannabivarinic acid, cannabinol, delta-9-tetrahyrocannabinol, delta-8-tetrahyrocannabinol, cannabicyclol, cannabichromene, delta-9-tetrahyrocannabinolic acid A, and cannabichromenic acid. The separation was carried out using a reversed-phase Luna® C18(2) column and a mobile phase consisting of 75% acetonitrile and 0.1% formic acid in water. A PDA detector was used, and data were extracted at λ=220 nm. Principal component analysis of cannabis four varieties was performed. Results: The method was linear over the calibration range of 5-75 µg/mL with R2>0.999 for all cannabinoids. This method was sensitive and gave good baseline separation of all examined cannabinoids with limits of detection ranging between 0.2 and 1.6 µg/mL and limits of quantification ranging between 0.6 and 4.8 µg/mL. The average recoveries for all cannabinoids were between 81% and 104%. The measured repeatability and intermediate precisions (% relative standard deviation) in all varieties ranged from 0.35% to 9.84% and 1.11% to 5.26%, respectively. Conclusions: The proposed method is sensitive, selective, reproducible, and accurate. It can be applied for the simultaneous determination of these cannabinoids in the C. sativa biomass and cannabis-derived marketed products.

2.
Planta Med ; 89(6): 683-696, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36257598

RESUMO

For decades, Cannabis sativa had been illegal to sell or consume around the world, including in the United States. However, in light of the recent 2018 Farm Bill and the legalization of hemp across the US, various cannabis preparations have flooded the market, making it essential to be able to quantitate the levels of the different acidic and neutral cannabinoids in C. sativa and to have a complete cannabinoid profile of the different chemovars of the cannabis plant. A GC-FID method was developed and validated for the analysis of 20 acidic and neutral cannabinoids as trimethylsilyl (TMS) derivatives. The analyzed cannabinoids include cannabidivarinic acid (CBDVA), cannabidiolic acid (CBDA), cannabinolic acid (CBNA), cannabielsoic acid (CBEA), cannabicyclolic acid (CBLA), cannabichromenic acid (CBCA), trans-Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA), trans-Δ9-tetrahydrocannabinolic acid A (Δ9-THCAA), cannabigerolic acid (CBGA), cannabidiol (CBD), cannabicyclol (CBL), cannabidivarin (CBDV), trans-Δ9-tetrahydrocannabivarin (THCV), cannabichromene (CBC), trans-Δ8-tetrahydrocannabinol (Δ8-THC), trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabigerol (CBG), cannabinol (CBN), cannabicitran (CBT), and cannabielsoin (CBE). The method limit of detection (LOD) was as low as 0.1 µg/mL, while the limit of quantitation ranged from 0.25 µg/mL to 0.5 µg/mL. The precision (%RSD) was < 10%, while trueness ranged from 90 - 107%. The developed method is simple, accurate, and sensitive for the quantitation of all 20 acidic and neutral cannabinoids. Finally, the proposed method was successfully applied to the quantitation of the cannabinoids in different cannabis chemovars grown at the University of Mississippi.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Limite de Detecção
3.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807354

RESUMO

Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, ß-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of -19.93 and -16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.


Assuntos
Balanophoraceae , Espectrometria de Massas em Tandem , Acetatos , Butileno Glicóis , Receptores ErbB , Flavanonas , Cromatografia Gasosa-Espectrometria de Massas , Lignanas , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos , Extratos Vegetais/química , Sitosteroides , Ácido Betulínico
4.
Planta Med ; 85(5): 431-438, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30646402

RESUMO

Terpenes are the major components of the essential oils present in various Cannabis sativa L. varieties. These compounds are responsible for the distinctive aromas and flavors. Besides the quantification of the cannabinoids, determination of the terpenes in C. sativa strains could be of importance for the plant selection process. At the University of Mississippi, a GC-MS method has been developed and validated for the quantification of terpenes in cannabis plant material, viz., α-pinene, ß-pinene, ß-myrcene, limonene, terpinolene, linalool, α-terpineol, ß-caryophyllene, α-humulene, and caryophyllene oxide. The method was optimized and fully validated according to AOAC (Association of Official Analytical Chemists) guidelines against reference standards of selected terpenes. Samples were prepared by extraction of the plant material with ethyl acetate containing n-tridecane solution (100 µg/mL) as the internal standard. The concentration-response relationship for all analyzed terpenes using the developed method was linear with r2 values > 0.99. The average recoveries for all terpenes in spiked indoor cultivated samples were between 95.0 - 105.7%, with the exception of terpinolene (67 - 70%). The measured repeatability and intermediate precisions (% relative standard deviation) in all varieties ranged from 0.32 to 8.47%. The limit of detection and limit of quantitation for all targeted terpenes were determined to be 0.25 and 0.75 µg/mL, respectively. The proposed method is highly selective, reliable, and accurate and has been applied to the simultaneous determination of these major terpenes in the C. sativa biomass produced by our facility at the University of Mississippi as well as in confiscated marijuana samples.


Assuntos
Cannabis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Terpenos/análise , Limite de Detecção , Reprodutibilidade dos Testes , Terpenos/isolamento & purificação
5.
Planta Med ; 84(4): 267-271, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29359294

RESUMO

A liquid chromatography-tandem mass spectrometry single-laboratory validation was performed for the detection and quantification of the 10 major cannabinoids of cannabis, namely, (-)-trans-Δ9-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, tetrahydrocannabivarian, cannabinol, (-)-trans-Δ8-tetrahydrocannabinol, cannabidiolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid-A, in the root extract of Cannabis sativa. Acetonitrile : methanol (80 : 20, v/v) was used for extraction; d3-cannabidiol and d3- tetrahydrocannabinol were used as the internal standards. All 10 cannabinoids showed a good regression relationship with r2 > 0.99. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in extracts of cannabis roots. To our knowledge, this is the first report for the quantification of cannabinoids in cannabis roots.


Assuntos
Canabinoides/análise , Cannabis/química , Cromatografia Líquida/métodos , Extratos Vegetais/química , Raízes de Plantas/química , Espectrometria de Massas em Tandem/métodos
6.
Planta Med ; 84(4): 250-259, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29237190

RESUMO

Cannabis (Cannabis sativa L.) is an annual herbaceous plant that belongs to the family Cannabaceae. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two major phytocannabinoids accounting for over 40% of the cannabis plant extracts, depending on the variety. At the University of Mississippi, different strains of C. sativa, with different concentration ratios of CBD and Δ9-THC, have been tissue cultured via micropropagation and cultivated. A GC-FID method has been developed and validated for the qualitative and quantitative analysis of acid and neutral cannabinoids in C. sativa extracts. The method involves trimethyl silyl derivatization of the extracts. These cannabinoids include tetrahydrocannabivarian, CBD, cannabichromene, trans-Δ8-tetrahydrocannabinol, Δ9-THC, cannabigerol, cannabinol, cannabidiolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid-A. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area ratio with R2 > 0.999 for all 10 cannabinoids. The precision and accuracy of the method were found to be ≤ 15% and ± 5%, respectively. The limit of detection range was 0.11 - 0.19 µg/mL, and the limit of quantitation was 0.34 - 0.56 µg/mL for all 10 cannabinoids. The developed method is simple, sensitive, reproducible, and suitable for the detection and quantitation of acidic and neutral cannabinoids in different extracts of cannabis varieties. The method was applied to the analysis of these cannabinoids in different parts of the micropropagated cannabis plants (buds, leaves, roots, and stems).


Assuntos
Canabinoides/análise , Cannabis/química , Ionização de Chama/métodos , Extratos Vegetais/química , Canabidiol/análise , Dronabinol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA