Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 11(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37888715

RESUMO

Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.

2.
Pak J Pharm Sci ; 35(3): 827-834, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35791483

RESUMO

Moringa oleifera plant grows in many countries worldwide and being utilized as a customary medication. The current study aimed to investigate the biological effect of Moringa oleifera leaf extract (MOE) alone or in combination with silver nanoparticles (AgNPs) on colon cancer, microbial cell growth. MOE was utilized in the green synthesis of AgNPs. The characterization of AgNPs was done by UV-Vis-spectrophotometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). MOE was tested for their sugars, active biomolecules, ROS, protein contents. Results revealed that created AgNPs are about 61 nm in diameter. There were no detectable sugar and protein in MOE, but it contains ROS and active biomolecules. MOE and MOE+AgNPs exerted mild antibacterial action and increased the number of apoptotic cells and p53 protein expression of HT-29 colon cancer cells. MOE and MOE+AgNPs could arrest HT-29 cells at G2/M phase and stimulate splenic cell growth. Both extract preparations showed antioxidant activities. Because MOE and MOE+AgNP stimulated immune cells and activated apoptosis in cancer cells, these preparations can be utilized as anticancer agents.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Moringa oleifera , Extratos Vegetais , Prata , Neoplasias do Colo/tratamento farmacológico , Células HT29 , Humanos , Moringa oleifera/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio , Prata/farmacologia
3.
Saudi J Biol Sci ; 28(6): 3367-3373, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121874

RESUMO

Calotropis procera and Somra (Acacia) honey are used in traditional medicine. The benefits of mixing 20% Somra honey and C. procera leaf water extract (CPLWExt) were aimed to be studied. Honey/CPLWExt were utilized to produce silver nanoparticles (AgNPs) separately. AgNPs were characterized via UV/Vis and electron microscope scanning. Bio-molecules in CPLWExt/honey were investigated utilizing FT-IR spectroscopy. Biological activities of CPLWExt and honey were tested. The outcomes showed that CPLWExt and honey have numerous functional groups and could produce AgNPs. CPLWExt, CPLWExt + AgNPs, honey and honey + AgNPs hindered the growth of rat splenocytes, while CPLWExt + honey invigorated it. Antimicrobial power was found in CPLWExt and honey, which increased in the presence of AgNPs. Honey/honey + AgNPs suppressed the proliferation of HeLa and HepG2 cells. In conclusion, honey/CPLWExt could produce AgNPs and showed immunomodulatory and antibacterial power. Somra honey/honey + AgNPs have anticancer power. Somra honey + CPLWExt reflected a good immunostimulatory powers that can be nominated as an immunostimulant.

4.
Rev. bras. parasitol. vet ; 30(1): e015920, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1156210

RESUMO

Abstract The consumption of inadequately thermally treated fish is a public health risk due to the possible propagation of Anisakis larvae. The present study demonstrated the physiological and histopathological changes that accompanied an oral inoculation of crude extracts from fresh and thermally treated Anisakis Type II (L3) in rats. Worms were isolated from a marine fish and examined and identified using light and scanning electron microscopy. The study was performed in 6 rat groups: control (I), garlic oil (GO) inoculated (II), fresh L3 inoculated (III), thermally treated L3 inoculated (IV), fresh L3 + GO inoculated (V), and a thermally treated L3 + GO inoculated (VI) groups. Rats inoculated with fresh and thermally treated L3 showed abnormal liver and kidney functions associated with the destruction of normal architecture. GO produced a protective effect in rat groups inoculated with L3 extracts + GO via the amelioration of liver and kidney functions, which was confirmed by the marked normal structure on histology. Cooking of L3-infected fish induced severe alterations compared to uncooked fish. The administration of garlic before and after fish eating is recommended to avoid the dangerous effect of anisakids, even if they are cooked.


Resumo O consumo de peixe inadequadamente tratado termicamente representa um risco para a saúde pública, com a possibilidade da propagação de larvas de Anisakis. O presente estudo demonstrou as alterações fisiológicas e histopatológicas acompanhadas de inoculação oral de extractos brutos de Anisakis tipo II (L3) frescos e termicamente tratados em ratos. Os vermes foram isolados de um peixe marinho, examinados e identificados por microscopia de luz e eletrônica de varredura. O estudo foi conduzido em 6 grupos de ratos: controle (I), óleo de alho (GO) inoculado (II), L3 fresco inoculado (III), L3 tratado termicamente inoculado (IV), L3 fresco + GO inoculado (V), e um grupo L3 + GO tratado termicamente inoculado (VI). Observou-se que ratos inoculados com L3 fresco e tratados termicamente mostraram funções hepáticas e renais anormais, associadas à destruição da sua arquitetura normal. GO produziu um efeito protector em grupos de ratos inoculados com extractos L3 + GO através da melhoria das funções do fígado e dos rins, o que foi confirmado pela estrutura normal marcada da sua histologia. A cozedura de peixes infectados com L3 induziu alterações mais graves do que os peixes não cozidos. Recomenda-se a administração de alho antes e depois do consumo de peixe, para evitar o efeito perigoso dos anisakids, mesmo que sejam cozidos.


Assuntos
Animais , Ratos , Sulfetos/farmacologia , Anisakis/efeitos dos fármacos , Anisaquíase/prevenção & controle , Anisaquíase/tratamento farmacológico , Compostos Alílicos/uso terapêutico , Compostos Alílicos/farmacologia , Sulfetos/uso terapêutico , Parasitologia de Alimentos , Ratos Wistar , Culinária , Peixes/parasitologia , Larva , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia
5.
Bioinorg Chem Appl ; 2020: 5626382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774352

RESUMO

Ruta graveolens, a plant belonging to the family Rutaceae, is traditionally used as a medicinal plant and a flavoring agent in food. This work aimed to prepare silver nanoparticles (AgNPs) using the ethanol extract from R. graveolens leaves and test different biological activities as well as insecticidal potentials in the extract and extract prepared AgNPs. Dried and powdered R. graveolens leaves were subjected to extraction using ethanol, and this extract was used to synthesize AgNPs. AgNP synthesis was monitored by the change in color, UV spectrophotometry, and electron microscopy (scanning). Fourier transform infrared (FT-IR) spectroscopy was used to monitor the functional groups in the extracts. Immunological, physiological, anticancer, antibacterial, and insecticidal potentials of the extract and its prepared AgNPs were tested. Results showed the ability of the leaf extract to synthesize. SEM examination revealed a spherical shape of AgNPs with a size of 40-45 nm. The extract contained many functional groups as indicated by FT-IR. The extract alone inhibited the growth of normal rat splenic cells, while the extract containing AgNPs stimulated its growth. Extract alone stimulated HeLa cell proliferation and inhibited HepG2 growth, while both cell line growth was inhibited by the extract containing AgNPs. Both the extract and extract with AgNPs were safe on RBCs and did not cause any severe elevation in liver enzymes. The extract alone and with AgNPs showed insecticidal activity against Culex pipiens. Our findings suggest that the R. graveolens leaf extract, alone or with AgNPs, is biologically safe on animal cells and has antibacterial, insecticidal, and immunomodulation potentials.

6.
Anticancer Agents Med Chem ; 20(8): 970-981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053084

RESUMO

BACKGROUND: Juniperus procera and Majra honey are well-known as a folk medicine in many countries. OBJECTIVES: This work aimed to study the immunomodulatory effects after mixing Majra honey, J. procera water leaves extract and silver Nanoparticles (AgNPs) on immune or cancer cells. METHODS: Juniperus procera water leaves extract and 20% Majra honey were prepared. Both the extract and honey were used separately to synthesize AgNPs. AgNPs were characterized using UV/Vis spectrophotometry and electron microscopy. Bioactive molecules in honey and the extract were explored using Fourier Transform Infrared (FT-IR) spectroscopy. Protein profile of honey was explored using Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS-PAGE) and honey sugar content was determined using High- Performance Liquid Chromatography (HPLC). Biological activities of honey and the extract were tested. RESULTS: The results demonstrated the ability of the extract/honey to produce AgNPs in a spherical shape. The extract/honey contained many functional groups. SDS-PAGE of Majra honey showed many protein bands. HPLC revealed honey is of good quality and no external additives are added to it. The extract and extract+ AgNPs inhibited the growth of normal rat splenic cells while honey stimulated it. The extract+honey turned stimulatory to the splenic cells' growth and significantly diminished the inhibitory potential of the extract containing AgNPs. Both the extract and honey have antimicrobial activities, this potential increased in the presence of AgNPs. Honey and Honey+AgNPs inhibited HepG2 cancer cell proliferation while Hela cell growth inhibited only with honey+AgNPs. CONCLUSION: Both honey and the extract have antibacterial and immunomodulatory potentials as well as the power to produce AgNPs. Majra honey alone showed anticancer activity against HepGe2 cells, but not against Hela cells, and when contained AgNPs had anticancer activity on both cell lines. Mixing of Majra honey with J. procera extract showed characterized immunomodulatory potentials that can be described as immunostimulant.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Mel , Juniperus/química , Extratos Vegetais/farmacologia , Prata/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Humanos , Masculino , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Prata/farmacologia , Relação Estrutura-Atividade
7.
Saudi J Biol Sci ; 26(7): 1689-1694, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762645

RESUMO

Juniperus spp. are used as medicinal plants in many countries like Bosnia, Lebanon, and Turkey. In folk medicines, these plants have been used for treating skin and respiratory tract diseases, urinary problems, rheumatism and gall bladder stones. The objectives of this work were to synthesize silver nanoparticles (AgNPs) using a coniferous tree, Juniperus procera leaf extract and testing the synthesized AgNPs for its antimicrobial potentials, hemolytic activity, toxicity and the proliferative effects against normal and activated rat splenic cells. Leaf extract was prepared using acetone and ethanol as solvents. AgNPs were prepared using the acetone extract. AgNPs were validated using UV-Vis spectroscopy and scanning electron microscopy (SEM). Functional groups in the extract were identified using Fourier Transform Infrared (FT-IR) spectroscopy. SEM images of AgNPs showed spherical and cubic shapes with a uniform size distribution with an average size of 30-90 nm. FT-IR spectroscopy showed the presence of many functional groups in the plant extract. AgNPs showed promising antimicrobial activity against tested bacteria and fungus. AgNPs also expressed a stimulating activity towards the rat splenic cells in a dose dependent manner. Acetone as solvent was safer on cells than ethanol. Green synthesized AgNPs using J. procera might be used as a broad-spectrum therapeutic agent against microorganisms and as an immunostimulant agent.

8.
Saudi J Biol Sci ; 26(7): 1716-1723, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762649

RESUMO

Natural products, including their purified materials, play a remarkable role in drug development. The Euphorbiaceae family, mainly Euphorbia tirucalli, is used in some traditional medicine, and has evidence that its latex comprises immunomodulatory properties and cytokine production. This study aimed to measure the in vivo production of chemokines (IL-1α, IL-1ß, IL-12, and RANTES), TH1 cytokines (IFN-γ, TNF-α, GM-CSF, and IL-2) and TH2 cytokines (IL-4, IL-6, IL-10, and IL-13) in rats after treatments with ethanol latex extract of E. tirucalli. Vaccine treated and untreated rats were divided into seven groups to assess antimicrobial activities of the extracted components. After completion of the treatment schedule, blood was withdrawn and sera were collected. The results showed that the main component of the extract was a euphol compound. The extract showed antimicrobial activity and had the ability to modulate innate and adaptive immunity. Animals treated with extract for only 7 days before vaccination showed higher levels of antibody production. The extract showed antibacterial and antifungal activities. The extract could stimulate both adaptive and innate immunity. Pre-treatment with the extract increased immune responses in vaccinated animals, indicating the usefulness of the extract before immunization.

9.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978998

RESUMO

Euphorbia peplus leaves extract (EpExt) and gold nanoparticles (AuNPs) phytofabricated with extract (EpExt-AuNPs) were investigated for biological activities. EpExt and EpExt-AuNPs were screened for: (i) anticancer activity against Hela and HepG2 cell lines; (ii) antimicrobial activity; (iii) hemolytic activity; (iv) cytotoxic or stimulatory effects; and (v) insecticidal activity. AuNPs (size 50 nm) were synthesized. (i) EpExt had a stimulatory effect (51.04%) on Hela cells and an inhibitory effect (-12.83%) on HepG2 cells while EpExt-AuNPs showed inhibitory effects (-54.25% and -59.64% on Hela and HepG2 cells respectively). (ii) Antimicrobial activity of EpExt-AuNPs was significantly higher (ranged from 11.67 mm to 14.33 mm) than that of EpExt (ranged from 5.33 mm to 6.33 mm). (iii) Both EpExt and EpExt-AuNPs displayed 100% hemolysis. (iv) A dose-dependent inhibitory effect of EpExt was observed (ranged from -48.5% to -92.1%), which was greater than that of EpExt-AuNPs (ranged from -32.1% to -69.1%) (v) EpExt-AuNPs was more lethal against mosquito larvae with lethal concentration (LC50) value (202.692 ppm) compared to EpExt (1430.590 ppm). In conclusion, EpExt-AuNPs were inhibitory against HepG2 and Hela cells, while EpExt inhibited HepG2 but stimulated Hela cells. EpExt-AuNPs had antimicrobial effects. EpExt showed dose-dependent inhibitory effects on splenic cells. EpExt-AuNPs were lethal against mosquito larvae.


Assuntos
Proliferação de Células/efeitos dos fármacos , Euphorbia/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Candida albicans/efeitos dos fármacos , Culex/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Ouro/química , Células HeLa , Células Hep G2 , Humanos , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos , Staphylococcus aureus/efeitos dos fármacos
10.
Chang Gung Med J ; 35(3): 231-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22735054

RESUMO

BACKGROUND: Varicella-zoster virus (VZV) is the etiologic agent of two diseases, varicella (chicken pox) and zoster (shingles). Varicella is a self- limited infection, while zoster is mainly a disease of adults. The present study was conducted to isolate VZV from clinically diagnosed children using cell cultures and compare the activity of liquorice powder extract, an alternative herbal antiviral agent, with acyclovir and interferon alpha 2a (IFN-α2a) against the isolated virus. METHODS: Forty-eight VZV specimens, 26 from vesicular aspirates and 22 from vesicular swabs, from children clinically diagnosed with varicella were isolated on the Vero cell line. Isolates were propagated and identified with specific antiserum using indirect immunofluorescence and immunodot blotting assays. The growth kinetics of the viral isolates was studied. The antiviral activity of liquorice powder extract, acyclovir (ACV) and IFN-α2a was evaluated against the isolated virus. RESULTS: VZV was successfully isolated in 4 of the 48 specimens, all from vesicular aspirates. The growth kinetics of the viral isolates was time dependent. The inhibitory activity of liquorice powder extract (containing 125 µg/ml glycyrrhizin) when compared to ACV (250 µg/ml) and IFN-α2a is the lowest. CONCLUSIONS: VZV isolates were successfully isolated and propagated using Vero cells. Isolates were identified using indirect immunofluorescent and immunodot blotting techniques. Growth kinetics of the isolates revealed an increase in the viral infectivity titer relative to time. Glycyrrhizin in the crude form has low antiviral activity against VZV compared with acyclovir and interferon.


Assuntos
Antivirais/farmacologia , Glycyrrhiza/química , Herpesvirus Humano 3/efeitos dos fármacos , Extratos Vegetais/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Criança , Pré-Escolar , Chlorocebus aethiops , Herpesvirus Humano 3/isolamento & purificação , Herpesvirus Humano 3/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA