Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Lett ; 736: 135276, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32771877

RESUMO

Pulsatile gonadotropin-releasing hormone (GnRH) secretion is essential for regulating reproductive functions in mammals. GnRH pulses are governed by a neural mechanism that is termed the GnRH pulse generator. In the present study, we investigated the role of central calcitonin receptor (CTR) signaling in the regulation of the GnRH pulse generator activity in ovariectomized goats by administering amylin, an endogenous ligand for CTR, into the lateral ventricle. GnRH pulse generator activity was measured using multiple unit activity (MUA) recordings in the mediobasal hypothalamus. We analyzed changes in the interval of characteristic increases in MUA (MUA volleys). The MUA volley interval shortened immediately after amylin administration, followed by prolonged intervals. Double in situ hybridization for KISS1 (kisspeptin gene) and CALCR (CTR gene) revealed that low expression levels of CALCR were found in the arcuate kisspeptin neurons, which is suggested as the main population of neurons, involved in GnRH pulse generator activity. These results suggest that central amylin-CTR signaling has a biphasic role in the regulation of GnRH pulse generator activity by acting on cells other than the arcuate kisspeptin neurons in goats.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Neurônios/efeitos dos fármacos , Animais , Feminino , Cabras , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Receptores da Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
J Reprod Dev ; 62(5): 471-477, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27349533

RESUMO

Elucidating the physiological mechanisms that control reproduction is an obvious strategy for improving the fertility of cattle and developing new agents to control reproductive functions. The present study aimed to identify kisspeptin neurons in the bovine hypothalamus, clarifying that a central mechanism is also present in the cattle brain, as kisspeptin is known to play an important role in the stimulation of gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in other mammals. To characterize kisspeptin neurons in the bovine hypothalamus, the co-localizations of kisspeptin and neurokinin B (NKB) or kisspeptin and dynorphin A (Dyn) were examined. Hypothalamic tissue was collected from Japanese Black or Japanese Black × Holstein crossbred cows during the follicular and luteal phases. Brain sections, including the arcuate nucleus (ARC) and the preoptic area (POA), were dual immunostained with kisspeptin and either NKB or Dyn. In the ARC, both NKB and Dyn were co-localized in kisspeptin neurons during both the follicular and luteal phases, demonstrating the presence of kisspeptin/NKB/Dyn-containing neurons, referred to as KNDy neurons, in cows. In the POA, no co-localization of kisspeptin with either NKB or Dyn was detected. Kisspeptin expression in the follicular phase was higher than that in the luteal phase, suggesting that kisspeptin expression in the POA is positively controlled by estrogen in cows. The kisspeptin neuronal populations in the ARC and POA likely play important roles in regulating the GnRH pulse and surge, respectively, in cows.


Assuntos
Dinorfinas/metabolismo , Ciclo Estral/fisiologia , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cruzamento , Bovinos , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Imuno-Histoquímica , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Progesterona/sangue , Radioimunoensaio
3.
Neuroendocrinology ; 103(6): 640-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26964105

RESUMO

After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals. Recently, emerging evidence has indicated the molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression. Here we compile data regarding DNA and histone modifications in the Kiss1 promoter region and provide a hypothetic scheme of the molecular and epigenetic mechanism regulating Kiss1 gene expression in two populations of hypothalamic kisspeptin neurons, which govern puberty and subsequent reproductive performance via GnRH/gonadotropin secretion.


Assuntos
Epigênese Genética , Expressão Gênica/fisiologia , Hipotálamo/citologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurônios/metabolismo , Animais , Histonas/genética , Histonas/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA