Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 176: 113808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163714

RESUMO

Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.


Assuntos
Dieta Hiperlipídica , Receptor Nicotínico de Acetilcolina alfa7 , Masculino , Feminino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Aumento de Peso , Hipotálamo/metabolismo , Fenótipo , Glucose/metabolismo
2.
Cells ; 11(14)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883638

RESUMO

Neuronal hypothalamic insulin resistance is implicated in energy balance dysregulation and contributes to the pathogenesis of several neurodegenerative diseases. Its development has been intimately associated with a neuroinflammatory process mainly orchestrated by activated microglial cells. In this regard, our study aimed to investigate a target that is highly expressed in the hypothalamus and involved in the regulation of the inflammatory process, but still poorly investigated within the context of neuronal insulin resistance: the α7 nicotinic acetylcholine receptor (α7nAchR). Herein, we show that mHypoA-2/29 neurons exposed to pro-inflammatory microglial conditioned medium (MCM) showed higher expression of the pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α, in addition to developing insulin resistance. Activation of α7nAchR with the selective agonist PNU-282987 prevented microglial-induced inflammation by inhibiting NF-κB nuclear translocation and increasing IL-10 and tristetraprolin (TTP) gene expression. The anti-inflammatory role of α7nAchR was also accompanied by an improvement in insulin sensitivity and lower activation of neurodegeneration-related markers, such as GSK3 and tau. In conclusion, we show that activation of α7nAchR anti-inflammatory signaling in hypothalamic neurons exerts neuroprotective effects and prevents the development of insulin resistance induced by pro-inflammatory mediators secreted by microglial cells.


Assuntos
Resistência à Insulina , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Benzamidas , Compostos Bicíclicos com Pontes , Quinase 3 da Glicogênio Sintase/metabolismo , Hipotálamo/metabolismo , Inflamação/patologia , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
3.
Food Res Int ; 151: 110897, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980418

RESUMO

High-fat diets seem to have a negative influence on the development of obesity and the processes associated with low-grade chronic systemic inflammation. In recent years, partial hydrogenated oil, rich in trans isomers, has been associated with deleterious health effects. It has been replaced by interesterified fat (IF). However, there is no evidence whether IF ingestion can exert adverse effects on the intestinal mucosa. Thus, this study aimed to evaluate the effect of IF on the intestinal mucosa of male Swiss mice fed a normal or high-fat diet, focusing on its effects on intestinal permeability and bacterial translocation and its possible damage to the intestinal epithelium. The animals were divided into 4 groups: Control (C) and Interesterified Control (IC) groups (10 En% lipids from unmodified fat or interesterified fat, respectively) and High Fat (HF) and Interesterified High Fat (IHF) groups (45 En% lipids from unmodified fat or interesterified fat, respectively). Compare to C, the IC, HF, and IHF groups presented flattened epithelium, a shorter villi length and a lower percentage of goblet cells, less mucin 2, an increased oxidative stress and more inflammatory cells, higher IL-1ß, IL-17, and IL-23 levels. These groups also presented increased intestinal permeability and gene expression of the protein claudin 2, while JAM-A and claudin 1 gene expression was reduced. IC and IHF increased IL-6 levels while reducing occludin expression. In addition, the IC group also presented a mucosa with lesions of low intensity in the ileum, an increased mucin 5ac, TNF-α levels, and reduced occludin expression in the distal jejunum. Moreover, there was a significant increase in bacterial translocation in the IC group to blood, liver, and lungs, while HF and IHF groups presented bacterial translocation which was restricted to the mesenteric lymph nodes. In summary, our results supported the hypothesis that IF added to a normolipidic diet can be considered harmful or even worse when compared to a HF.


Assuntos
Translocação Bacteriana , Ácidos Graxos , Animais , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Masculino , Camundongos , Óleo de Palmeira , Permeabilidade , Proteínas de Junções Íntimas/genética
4.
Mol Nutr Food Res ; 65(10): e2000943, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650755

RESUMO

SCOPE: Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS: Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS: These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.


Assuntos
Comportamento Animal/efeitos dos fármacos , Óleo de Coco/administração & dosagem , Óleo de Coco/efeitos adversos , Doenças Hipotalâmicas/induzido quimicamente , Inflamação/induzido quimicamente , Doenças Metabólicas/induzido quimicamente , Adiposidade/efeitos dos fármacos , Animais , Glicemia/análise , Suplementos Nutricionais , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia , Aumento de Peso/efeitos dos fármacos
5.
J Neuroendocrinol ; 32(10): e12900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33040385

RESUMO

High-fat diet (HFD) feeding is deleterious to hypothalamic tissue, leading to inflammation and lipotoxicity, as well as contributing to central insulin resistance. Autophagy is a process that restores cellular homeostasis by degrading malfunctioning organelles and proteins. Chronic HFD-feeding down-regulates hypothalamic autophagy. However, the effects of short-term HFD-feeding and the saturated fatty acid palmitate (PA) on hypothalamic autophagy and in neurones that express neuropeptide Y (NPY) and agouti-related peptide remains unknown. Therefore, we assessed hypothalamic autophagy after 1 and 3 days of HFD-feeding. We also injected PA i.c.v and analysed the modulation of autophagy in hypothalamic tissue. Both interventions resulted in changes in autophagy-related gene profiles without significant differences in protein content of p62 and LC3B-II, markers of the autophagy pathway. When we assessed native NPY neurones in brain slices from PA-treated animals, we observed increased levels of Atg7 and LC3B protein in response to PA treatment, indicating the induction of autophagy. We then tested the direct effects of fatty acids using the immortalised hypothalamic NPY-expressing neuronal cell model mHypoE-46. We found that PA, but not palmitoleate (PO) (a monounsaturated fatty acid), was able to induce autophagy. Co-treatment with PA and PO was able to block the PA-mediated induction of autophagy, as assessed by flow cytometry. When the de novo ceramide synthesis pathway was blocked with myriocin pre-treatment, we observed a decrease in PA-mediated induction of autophagy, although there was no change with the toll-like receptor 4 inhibitor, TAK-242. Taken together, these findings provide evidence that saturated and unsaturated fatty acids can differentially regulate hypothalamic autophagy and that ceramide synthesis may be an important mediator of those effects. Understanding the mechanisms by which dietary fats affect autophagy in neurones involved in the control of energy homeostasis will provide potential new pathways for targeting and containing the obesity epidemic.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Graxos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Autofagia/genética , Células Cultivadas , Dieta Hiperlipídica , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido Palmítico/farmacologia , Fatores de Tempo
6.
Metabolism ; 112: 154350, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910938

RESUMO

BACKGROUND: Interesterified fats have largely replaced the partially hydrogenated oils which are the main dietary source of trans fat in industrialized food. This process promotes a random rearrangement of the native fatty acids and the results are different triacylglycerol (TAG) molecules without generating trans isomers. The role of interesterified fats in metabolism remains unclear. We evaluated metabolic parameters, glucose homeostasis and inflammatory markers in mice fed with normocaloric and normolipidic diets or hypercaloric and high-fat diet enriched with interesterified palm oil. METHODS: Male Swiss mice were randomly divided into four experimental groups and submitted to either normolipidic palm oil diet (PO), normolipidic interesterified palm oil diet (IPO), palm oil high-fat diet (POHF) or interesterified palm oil high-fat diet (IPOHF) during an 8 weeks period. RESULTS: When compared to the PO group, IPO group presented higher body mass, hyperglycemia, impaired glucose tolerance, evidence of insulin resistance and greater production of glucose in basal state during pyruvate in situ assay. We also observed higher protein content of hepatic PEPCK and increased cytokine mRNA expression in the IPO group when compared to PO. Interestingly, IPO group showed similar parameters to POHF and IPOHF groups. CONCLUSION: The results indicate that substitution of palm oil for interesterified palm oil even on normocaloric and normolipidic diet could negatively modulate metabolic parameters and glucose homeostasis as well as cytokine gene expression in the liver and white adipose tissue. This data support concerns about the effects of interesterified fats on health and could promote further discussions about the safety of the utilization of this unnatural fat by food industry.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Homeostase/efeitos dos fármacos , Fígado/efeitos dos fármacos , Óleo de Palmeira/administração & dosagem , Animais , Citocinas/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos
7.
J Nutr Biochem ; 59: 153-159, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30005920

RESUMO

Interesterified fats have largely replaced hydrogenated vegetable fat, which is rich in trans fatty acids, in the food industry as an economically viable alternative, generating interest to study their health effects. The aim of this study was to evaluate the effect that interesterification of oils and fat has on lipid-induced metabolic dysfunction, hepatic inflammation and ER stress. Five week-old male Wistar rats were randomly divided into three experimental groups, submitted to either normocaloric and normolipidic diet containing 10% of lipids from unmodified soybean oil (SO) or from interesterified soybean oil (ISO), and one more group submitted to a high fat diet (HFD) containing 60% of fat from lard as a positive control, for 8 or 16 weeks. Metabolic parameters and hepatic gene expression were evaluated. The HFD consumption led to increased body mass, adiposity and impaired glucose tolerance compared to SO and ISO at both time points of diet. However, the ISO group showed an increased body mass gain, retroperitoneal WAT mass, fasting glucose, and impaired glucose tolerance during ipGTT at 16 weeks compared to SO. Moreover, at 8 weeks, hepatic gene expression of Atf3 and Tnf were increased in the ISO group compared to the SO group. Thus, replacement of natural fat with interesterified fat on a normocaloric and normolipidic diet negatively modulated metabolic parameters and resulted in impaired glucose tolerance in rats.


Assuntos
Fígado/efeitos dos fármacos , Óleo de Soja/química , Óleo de Soja/farmacologia , Aumento de Peso/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Esterificação , Ácidos Graxos/análise , Ácidos Graxos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose , Hepatite/etiologia , Fígado/fisiologia , Masculino , Ratos Wistar
8.
Nutrients ; 9(4)2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346369

RESUMO

Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF) or the dark (DPF) phases of the light/dark cycle. This experimental approach was combined with other interventions, including restriction of chow availability to the dark phase, melatonin administration or intracerebroventricular inhibition of adenosine monophosphate-activated protein kinase (AMPK) with Compound C. LPF, but not DPF rats, exhibited increased hypothalamic AMPK phosphorylation, glucose intolerance, reduced urinary 6-sulfatoxymelatonin (6-S-Mel) (a metabolite of melatonin) and increased corticosterone levels. LPF, but not DPF rats, also exhibited increased chow ingestion during the light phase. The mentioned changes were blunted by Compound C. LPF rats subjected to dark phase-restricted feeding still exhibited increased hypothalamic AMPK phosphorylation but failed to develop the endocrine and metabolic changes. Moreover, melatonin administration to LPF rats reduced corticosterone and prevented glucose intolerance. Altogether, the present data suggests that consumption of fructose during the light phase results in out-of-phase feeding due to increased hypothalamic AMPK phosphorylation. This shift in spontaneous chow ingestion is responsible for the reduction of 6-S-Mel and glucose intolerance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano , Frutose/efeitos adversos , Hipotálamo/efeitos dos fármacos , Melatonina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Corticosterona/sangue , Relação Dose-Resposta a Droga , Intolerância à Glucose , Hipotálamo/metabolismo , Masculino , Melatonina/administração & dosagem , Melatonina/análogos & derivados , Melatonina/urina , Fosforilação , Ratos , Ratos Sprague-Dawley
9.
Mediators Inflamm ; 2014: 736506, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258479

RESUMO

We evaluated whether protein restriction in fetal life alters food intake and glucose homeostasis in adulthood by interfering with insulin signal transduction through proinflammatory mechanisms in the hypothalamus and peripheral tissues. Rats were divided into the following: a control group (C); a recovered group (R); and a low protein (LP) group. Relative food intake was greater and serum leptin was diminished in LP and R compared to C rats. Proinflammatory genes and POMC mRNA were upregulated in the hypothalamus of R group. Hypothalamic NPY mRNA expression was greater but AKT phosphorylation was diminished in the LP than in the C rats. In muscle, AKT phosphorylation was higher in restricted than in control animals. The HOMA-IR was decreased in R and C compared to the LP group. In contrast, the K(itt) in R was similar to that in C and both were lower than LP rats. Thus, nutritional recovery did not alter glucose homeostasis but produced middle hyperphagia, possibly due to increased anorexigenic neuropeptide expression that counteracted the hypothalamic inflammatory process. In long term protein deprived rats, hyperphagia most likely resulted from increased orexigenic neuropeptide expression, and glucose homeostasis was maintained, at least in part, at the expense of increased muscle insulin sensitivity.


Assuntos
Hipotálamo/imunologia , Hipotálamo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/fisiologia , Dieta com Restrição de Proteínas , Ingestão de Alimentos/fisiologia , Feminino , Immunoblotting , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA