Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS One ; 17(3): e0264074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239683

RESUMO

B. vulgaris extracts possess antioxidant, anti-inflammatory along with its role in improving memory disorders. Subsequently, in vitro and in silico studies of its purified phytochemicals may expand complementary and alternative Alzheimer's therapeutic option. Super activation of acetylcholinesterase enzyme is associated explicitly with Alzheimer's disease (AD) ultimately resulting in senile dementia. Hence, acetylcholinesterase enzyme inhibition is employed as a promising approach for AD treatment. Many FDA approved drugs are unable to cure the disease progression completely. The Present study was devised to explore the potential bioactive phytochemicals of B. vulgaris as alternative therapeutic agents against AD by conducting in vitro and in silico studies. To achieve this, chemical structures of phytochemicals were recruited from PubChem. Further, these compounds were analyzed for their binding affinities towards acetylcholinesterase (AChE) enzyme. Pharmacophoric ligand-based models showed major characteristics like, HBA, HBD, hydrophobicity, aromaticity and positively ionizable surface morphology for receptor binding. Virtual screening identified three hit compounds including betanin, myricetin and folic acid with least binding score compared to the reference drug, donepezil (-17 kcal/mol). Further, in vitro studies for anti-acetylcholinesterase activity of betanin and glycine betaine were performed. Dose response analysis showed 1.271 µM and 1.203 µM 50% inhibitory concentration (IC50) values for betanin and glycine betaine compounds respectively. Our findings indicate that phytoconstituents of B. vulgaris can be implicated as an alternative therapeutic drug candidate for cognitive disorders like Alzheimer's disease.


Assuntos
Acetilcolinesterase
2.
Curr Pharm Biotechnol ; 23(1): 158-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33535946

RESUMO

BACKGROUND AND PURPOSE: Carbon tetrachloride (CCl4) is a dynamic environmental toxin released from chemical factories and its concentration in the atmosphere is accelerating at an alarming proportion. The potential presence of CCl4 in the human body causes liver injury via free radical stimulated inflammatory responses. OBJECTIVES: In this study, protective effects of hydromethanolic seeds extract of Prunus persica (PPHM) were evaluated for free radical scavenging potential in CCl4 mediated acute liver toxicity in the murine model. EXPERIMENTAL APPROACH: Followed by acute oral toxicity analysis, liver cells of Sprague-Dawley (SD) rats were treated with CCl4 and subsequently, the chemoprophylactic effect of extract (400 mg/Kg dose) was evaluated using in vivo studies including, silymarin as the positive control. Biochemical parameters, staining (hematoxylin and eosin (H & E) and Masson's Trichome) and quantitative gene expression analysis via real-time PCR were used to evaluate hepatic damage control. RESULTS: The results illustrated that PPHM extract exhibit strong anti-oxidant activity, comparable to the positive control, gallic acid. Research study results also demonstrated that the extract treatment at 400 mg/Kg concentration is highly effective in protecting liver damage due to CCl4 exposure. Mechanistic investigations indicated that the therapeutic action of PPHM was correlated with the increase in Nrf2, NQO-1 and decrease in collagen III mRNA genes expression compared to CCl4 treated group. CONCLUSIONS AND IMPLICATIONS: Accordingly, our research study indicated that PPHM alleviated CCl4-mediated oxidative stress through Nrf2/NQO-1 pathway, thereby protecting liver damage against environmental toxins. Our findings provide supportive evidence to suggest PPHM as a novel nontoxic hepatoprotective agent.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Prunus persica , Animais , Antioxidantes/metabolismo , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/metabolismo , Camundongos , Estresse Oxidativo , Compostos Fitoquímicos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
3.
J Biomol Struct Dyn ; 40(17): 7829-7851, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33764266

RESUMO

Berberis lyceum and Fumaria indica are two Pakistani indigenous herbal medicines used to treat liver infections, including hepatitis C virus (HCV). This study aimed to evaluate the cytotoxicity, and antioxidant activity of these plant extracts and computationally screen their selected phytoconstituents as HCV NS5A inhibitors. The viability of HepG2 cells was assessed 24 h and 48 h post-treatment using colorimetric and dye exclusion methods. Antioxidant properties were examined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, and total antioxidant capacity assays. Seventeen known phytochemicals identified from each plant were docked into the active binding site of HCV NS5A protein. The top hit ligands were analyzed for their druglikeness properties and the indices of absorption, distribution, metabolism, elimination, and toxicity (ADMET). The results showed that both plant extracts were non-toxic (CC50 > 200 µg/ml). The IC50 values of DPPH-radical scavenging activity were 51.02 ± 0.94 and 62.91 ± 1.85 µg/ml for B. lyceum and F. indica, respectively. They also exhibited reducing power and total antioxidant capacity.The phytochemicals were identified as potent HCV NS5A inhibitors with good druglikeness and ADMET properties. Six of the docked phytochemicals exhibited higher binding scores (-17.9 to -19.2 kcal/mol) with HCV NS5A protein than the standard drug, daclatasvir (-17.2 kcal/mol). Molecular dynamics (MD) simulation confirmed the stability of two compounds, berbamine and paprafumine at 100 ns with active site of HCV NS5A protein. The identified compounds through molecular docking and MD simulation could have potential as HCV NS5A inhibitor after further validation.


Assuntos
Berberis , Fumaria , Hepatite C , Antioxidantes/farmacologia , Antivirais/química , Berberis/metabolismo , Hepacivirus/metabolismo , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Proteínas não Estruturais Virais/química
4.
Front Pharmacol ; 12: 774583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950034

RESUMO

The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle's anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.

5.
Pak J Pharm Sci ; 34(3(Special)): 1195-1202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602389

RESUMO

In the present study phytochemical analysis and anticancer activity of Misopates orontium L. and Dicliptera bupleuroides Nees was carried out. Methanolic extracts of M. orontium and D. bupleuroides were selected for phytochemical analysis. The present analysis showed the presence of phytochemical such as carbohydrates, proteins, tannins, glycosides, alkaloids, saponins, phenols and flavonoids in M. orontium and D. bupleuroides. Anticancer assays including MTT, Alamar Blue (AB), Neutral Red (NR) and lactate dehydrogenase (LDH) were employed on whole herb methanolic extract and all other fractions of both plants to calculate the % age of cell viability and cell cytotoxicity. The percentage of cell viability was highly significant in all anticancer assays for all fractions. Therefore, ethyl acetate and aqueous fractions showed the excellent profile in evaluation of cytotoxicity in each assay. All above findings indicated that the whole herb of both selected plants have strong anticancer activity.


Assuntos
Acanthaceae/química , Sobrevivência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantaginaceae/química , Alcaloides , Carboidratos , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides , Glicosídeos , Células Hep G2 , Humanos , Técnicas In Vitro , Indicadores e Reagentes , L-Lactato Desidrogenase , Vermelho Neutro , Oxazinas , Extratos Vegetais/química , Proteínas de Plantas , Saponinas , Taninos , Terpenos , Sais de Tetrazólio , Tiazóis , Xantenos
6.
Pak J Pharm Sci ; 34(1(Supplementary)): 291-300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34275853

RESUMO

Study has been premeditated to appraise the anticancer and anti-inflammatory activities of a native medicinal plant Saussurea hypoleuca Spreng root. Anticancer assays including MTT, Alamar Blue (AB), Neutral Red (NR) & LDH were employed on root methanolic extract (RME) and all fractions to calculate % age of cell viability and cell cytotoxicity. All fractions of plant root were tested for in vitro as well as in vivo anti-inflammatory assays by reported methods. GC-MS analysis of n-hexane: chloroform fractions in column chromatography has shown isopropyl myristate, hexadecanoic acid, 11-octadecenoic acid, Di-n-octyl phthalate, dioctyl ether, decanedioic acid, 1H-3a,7-Methanoazulene, 3,4-hexanedione and Tetracosapentaene. Percentage of cell viability in anticancer assays was significantly high in all fractions. However, whole results were momentous with ethyl acetate and aqueous fractions owning to excellent profile in evaluating cytotoxicity in each assay. COX-2 inhibition was calculated which was high in RME (68.69%), ethyl acetate (56.52%), aqueous (55.21%) and chloroform fraction (53.47%). Carrageenan and formalin models were developed on rats to investigate in vivo anti-inflammatory activity. RME (56.19%, 71.09%, 66.4%, 67.99%) and ethyl acetate (51.36%, 64.97%, 55.63% & 61.01%) produced significant % age inhibition in dose dependent manner at 200 and 400 mg/kg doses respectively. All above findings direct that plant root holds strong anticancer and anti-inflammatory activities.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas , Saussurea , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Carragenina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Formaldeído/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Inflamação/induzido quimicamente , Ratos
7.
J Ethnopharmacol ; 272: 113938, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610708

RESUMO

ETHNOBOTANICAL RELEVANCE: Tectona grandis L.f (or syn: Jatus grandis (L.f.) Kuntze Revis), from family Lamiaceae, also known as Teak, is widely recognized in ayurvedic system of medicine and confer curative potential against inflammation, liver disorders, biliousness, diabetes, bronchitis, leprosy and dysentery. Its leaves are rich source of edible food colorant and reported nontoxic for liver and various organs. AIM OF STUDY: Hepatic injury progression to liver cirrhosis and cancer is a serious health issue across the world. Currently, anti-fibrotic therapeutic options are limited and expensive with no FDA approved direct anti-hepato-fibrotic drug validated in clinic. Thus, the aim of this study was to understand ameliorative effect of Tectona grandis L.f, leaves in early liver fibrosis. METHOD AND RESULTS: C57BL/6 mice suffering from CCl4 induced liver injury, were orally administered at three different doses (50, 100 & 200 mg/kg) of Tectona grandis L.f, leaf extract, thrice a week, up to 4 and 8 weeks. Anti-fibrotic effect was evaluated through animal body/liver weight measurements, serological tests (AST, ALT, GSH, MDA and LDH assays), tissue hydroxyproline content, and histochemical analysis (H&E, Masson trichrome, Sirius red and αSMA localization). Moreover, transcriptional and post-transcriptional expression of fibrosis associated biomarkers and TGF-ß/Smad cascade were analyzed. It was observed that 100 mg/kg dose optimally downregulated TGF-ß1/Smad2 with upregulation of Smad7 and regulated αSMA, Col 1, PDGF, TIMP1 and MMP3 expression, post 8 weeks of treatment. In addition, MMP3/TIMP1 ratio was upregulated to 0.7, 2.5 and 1.7 fold at 50 mg/kg, 100 mg/kg & 200 mg/kg treatments respectively, in comparison to untreated liver fibrosis models. The extract contains gallic acid, caffeic acid, sinapinic acid and myricetin when analyzed through high performance liquid chromatography. CONCLUSION: Tectona grandis L.f, leaves have potential to ameliorate liver fibrosis induced by CCl4 in mice via modulation of TGF-ß1/Smad pathway and upregulated MMP3/TIMP1 ratio.


Assuntos
Lamiaceae/química , Cirrose Hepática/prevenção & controle , Metaloproteinase 3 da Matriz/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/intoxicação , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Colágeno/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Metaloproteinase 3 da Matriz/genética , Camundongos Endogâmicos C57BL , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Substâncias Protetoras/química , Proteína Smad2/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Transaminases/sangue , Fator de Crescimento Transformador beta/genética , Células Vero
8.
Artigo em Chinês | WPRIM | ID: wpr-883373

RESUMO

Objective: To evaluate the antiviral activity and phytochemicals of selected plant extracts and their effect on the mitogen-activated protein kinase (MAPK) signaling pathway modulated by hepatitis C virus (HCV) nonstructural protein 5A (NS5A). Methods: A total of ten plant extracts were initially screened for their toxicities against HepG2 cells. The non-toxic plants were tested for their inhibitory effect on the expression of HCV NS5A at both mRNA and protein levels using real-time PCR and Western blotting assays, respectively. The differential expression of the genes associated with MAPK pathway in the presence of NS5A gene and plant extract was measured through real-time PCR. Subsequently, the identification of secondary metabolites was carried out by phytochemical and HPLC analysis. Results: The phytochemical profiling of Berberis lyceum revealed the presence of alkaloids, phenols, saponins, tannins, flavonoids, carbohydrates, terpenoids, steroids, and glycosides. Similarly, quercetin, myricetin, gallic acid, caffeic acid, and ferulic acid were identified through HPLC analysis. The methanolic extract of Berberis lyceum strongly inhibited HCV RNA replication with an IC50 of 11.44 μg/mL. RT-PCR and Western blotting assays showed that the extract reduced the expression of HCV NS5A in a dose-dependent manner. Berberis lyceum extract also attenuated NS5A-induced dysregulation of the MAPK signaling pathway. Conclusions: Our findings suggest that Berberis lyceum extract strongly inhibits HCV propagation by reducing HCV NS5A-induced perturbation of MAPK signaling.

9.
Infect Genet Evol ; 84: 104371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485331

RESUMO

HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 µM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 µM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.


Assuntos
Antivirais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Sítio Alostérico , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Benzotiazóis/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
10.
Phytomedicine ; 68: 153168, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982837

RESUMO

BACKGROUND: Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS: The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS: The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS: Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION: Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Curcumina/farmacologia , Feminino , Genisteína/farmacologia , Humanos , Resveratrol/farmacologia
11.
Microb Pathog ; 121: 198-209, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775725

RESUMO

BACKGROUND: Without an effective vaccine, hepatitis C virus (HCV) remains a global threat, inflicting 170-300 million carriers worldwide at risk of cirrhosis and hepatocellular carcinoma (HCC). Though various direct acting antivirals have been redeemed the hepatitis C treatment, a few restraints persist including possible side effects, viral resistance emergence, excessive cost which restricts its availability to a common person. HYPOTHESIS: There is no preventive HCV vaccine available today so the discovery of potent antiviral natural flora and their bioactive constituents may help to develop preventive cures against HCV infection. STUDY DESIGN: In current study, we aim to clarify anti-HCV activity of methanol and acetone extracts along with the purified fractions of Pakistani local plant, Nymphaea alba L (N. alba) using Huh-7 cell line as transfection model. Synergistic study of purified fractions with interferon was performed using MDBK cell line (expressing interferon receptors) as transfection model. MATERIALS AND METHODS: Recent study by our research group has observed potent anti-HCV NS3 protease activity of methanol and acetone extracts of N. alba. Effect of N. alba extracts, its fractions precisely, the N1 and N8 fractions on HCV replication was demonstrated by analyzing viral gene expression using in vitro transfection model. Considering NS3 protease as a dynamic drug target, fourteen phytochemicals of N. alba were selected as ligands for interaction with NS3 protein using Molecular Operating Environment (MOE) software. Boceprevir, FDA approved NS3 protease inhibitor, was used as standard for comparative study in docking screening. RESULTS: Herein we report 84% and 94% reduction of 3a genotype of HCV NS3/4A gene expression at mRNA level at non-toxic concentration. Specifically, two fractions 'N1' & 'N8' isolated from acetone extract suppressed HCV NS3 gene expression in transfected target cells with an EC50 value of 37 ±â€¯0.03 µg/ml and 20 ±â€¯0.02 µg/ml respectively. Similarly, viral genotype 1a replication is strongly suppressed in target cells by N. alba flower extracts and purified fractions. Moreover, combination of fractions with standard antiviral drug displayed synergistic effects for inhibition of HCV replication. Phytochemicals including Isoquercetin, Hyperoside, Quercetin, Reynoutrin, Apigenin and Isokaempferide displayed minimum binding energies as compared to standard protease inhibitor. CONCLUSION: N. alba and its purified phytochemicals with new scaffolds might significantly serve as valuable and alternative regimen against HCV either alone or in combination with other potential anti-HCV agents.


Assuntos
Antivirais/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nymphaea/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flores/química , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Compostos Fitoquímicos/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
12.
Curr Pharm Biotechnol ; 19(15): 1221-1231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30608038

RESUMO

BACKGROUND: Plants extracts and their bioactive constituents can provide an alternative approach for new treatment. Pakistani flora reveals a huge, largely untapped source of potential antiviral constituents. OBJECTIVE: High-cost concerns of direct-acting anti-HCV drugs limit their employment specifically in developing countries like Pakistan. Therefore, discovery of inexpensive and nontoxic agents is needed for HCV treatment. METHODOLOGY: In this study, we used plasmid constructs of pCR3.1/FLAGtag/HCV NS3/4A (genotype 1a & 3a) and Punica granatum extracts (PK AV 003) and semi-purified fractions (P1-P11) were evaluated for their anti-HCV activity. Acetone extract along with two fractions (P4 & P11) revealed a useful therapeutic index. RESULTS: The fractions P4 (IC50=28.5±0.02 µg/ml; IC25=16±0.02 µg/ml) and P11 (IC50=72±0.02 µg/ml; IC25=41±0.03 µg/ml) dramatically suppressed HCV replication as measured by quantitative PCR (qPCR) and HCV NS3 protein expression level in transient transfection model. Consistent with suppression in genome replication, inhibition of HCV infectious particles by PK AV 003 extract was also judged in an infectious model system. This data is the first description of Pakistani indigenous cultivated fruit-producing plant, Punica granatum, possessing anti-HCV activity. Further analyses are being performed for investigating the mechanistic studies and structural characterization of purified fractions of PK AV 003. CONCLUSION: Our findings suggest that PK AV 003 fruit extract might be useful as an add-on therapeutic candidate for treating HCV infection.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Lythraceae/química , Extratos Vegetais/farmacologia , Antivirais/isolamento & purificação , Frutas/química , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Extratos Vegetais/isolamento & purificação , Plasmídeos , Serina Proteases/genética , Proteínas não Estruturais Virais/genética
13.
Nat Prod Res ; 32(17): 2121-2125, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28805446

RESUMO

Epigallocatechin gallate is a polyphenol of tea plants. Other than tea its trace amounts are found in apple skin, onions and plums. It has anti-adipogenic and anti-oxidant potential. It was investigated that epigallocatechin gallate stopped the adipogenic differentiation of mice mesenchymal stem cells but its underlying mechanism is not well understood. Different proteins and transcription factors responsible for differentiation of adipocytes could be its targets. This study was designed to determine the potential target of epigallocatechin gallate in human. Human Peroxisome Proliferator-Activated Receptors (PPAR) gamma protein was selected as the potential target as it is a key transcription factor for differentiation of adipose cells. Docking analysis of PPAR gamma and epigallocatechin gallate demonstrated that epigallocatechin gallate binds with PPAR gamma at its active site and blocks its activity. This study helps in understanding the mode of action of epigallocatechin gallate that would help for anti-obesity drug development.


Assuntos
Catequina/análogos & derivados , Desenho de Fármacos , Obesidade/tratamento farmacológico , PPAR gama , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Camellia sinensis , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Diferenciação Celular , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Obesidade/metabolismo , PPAR gama/metabolismo , Polifenóis/metabolismo , Chá/química , Fatores de Transcrição/metabolismo
14.
Biomed Pharmacother ; 83: 881-891, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27513212

RESUMO

Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200µg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body.


Assuntos
Simulação por Computador , Hepacivirus/enzimologia , Extratos Vegetais/farmacologia , Taraxacum/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/análise , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Viral Immunol ; 28(5): 282-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25871297

RESUMO

Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.


Assuntos
Hepatite C Crônica/tratamento farmacológico , Extratos Vegetais/farmacologia , Portulaca/metabolismo , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Serina Endopeptidases/metabolismo
16.
Virol J ; 8: 229, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21569618

RESUMO

HCV is a leading cause of hepatocellular carcinoma and cirrhosis all over the world. Claudins belong to family of tight junction's proteins that are responsible for establishing barriers for controlling the flow of molecules around cells. For therapeutic strategies, regulation of viral entry into the host cells holds a lot of promise. During HCV infection claudin-1 is highly expressed in liver and believed to be associated with HCV virus entry after HCV binding with or without co-receptor CD81. The claudin-1 assembly with tight junctions is regulated by post translational modifications. During claudins assembly and disassembly with tight junctions, phosphorylation is required at C-terminal tail. In cellular proteins, interplay between phosphorylation and O-ß-GlcNAc modification is believed to be functional switch, but it is very difficult to monitor these functional and vibrant changes in vivo. Netphos 2.0 and Disphos 1.3 programs were used for potential phosphorylation; NetPhosK 1.0 and KinasePhos for kinase prediction; and YinOYang 1.2 and OGPET to predict possible O-glycosylation sites. We also identified Yin Yang sites that may have potential for O-ß-GlcNAc and phosphorylation interplay at same Ser/Thr residues. We for the first time proposed that alternate phosphorylation and O-ß-GlcNAc modification on Ser 192, Ser 205, Ser 206; and Thr 191 may provide an on/off switch to regulate assembly of claudin-1 at tight junctions. In addition these phosphorylation sites may be targeted by novel chemotherapeutic agents to prevent phosphorylation lead by HCV viral entry complex.


Assuntos
Hepacivirus/fisiologia , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Internalização do Vírus , Sequência de Aminoácidos , Claudina-1 , Biologia Computacional/métodos , Glicosilação , Humanos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA