Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36565667

RESUMO

Nearly half of the world's population is at risk of being infected by Plasmodium falciparum, the pathogen of malaria. Increasing resistance to common antimalarial drugs has encouraged investigations to find compounds with different scaffolds. Extracts of Artocarpus altilis leaves have previously been reported to exhibit in vitro antimalarial activity against P. falciparum and in vivo activity against P. berghei. Despite these initial promising results, the active compound from A. altilis is yet to be identified. Here, we have identified 2-geranyl-2', 4', 3, 4-tetrahydroxy-dihydrochalcone (1) from A. altilis leaves as the active constituent of its antimalarial activity. Since natural chalcones have been reported to inhibit food vacuole and mitochondrial electron transport chain (ETC), the morphological changes in food vacuole and biochemical inhibition of ETC enzymes of (1) were investigated. In the presence of (1), intraerythrocytic asexual development was impaired, and according to the TEM analysis, this clearly affected the ultrastructure of food vacuoles. Amongst the ETC enzymes, (1) inhibited the mitochondrial malate: quinone oxidoreductase (PfMQO), and no inhibition could be observed on dihydroorotate dehydrogenase (DHODH) as well as bc1 complex activities. Our study suggests that (1) has a dual mechanism of action affecting the food vacuole and inhibition of PfMQO-related pathways in mitochondria.


Assuntos
Antimaláricos , Artocarpus , Chalconas , Malária Falciparum , Humanos , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artocarpus/química , Artocarpus/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Malatos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Malária Falciparum/tratamento farmacológico , Mitocôndrias/metabolismo , Quinonas/farmacologia
2.
J Basic Clin Physiol Pharmacol ; 34(5): 639-645, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171938

RESUMO

OBJECTIVES: Andrographis paniculata tablets (AS201-01) have previously been shown to have potent bioactivity as an antimalarial and to produce no unwanted side effects in animal models. Here, we present the phase 1 clinical trial conducted to evaluate the safety of AS201-01 tablets in healthy volunteers. METHODS: The study was a randomized, double-blind controlled cross-over, a placebo-controlled design consisting of a 4-day treatment of AS201-01 tablets. A total of 30 healthy human volunteers (16 males and 14 females) were divided into two groups, and each group was given 4 tablets, twice daily for 4 days. Group 1 received AS201-01, while group 2 received placebo tablets. Volunteers were given a physical examination before the treatment. The effects of AS201-01 on random blood glucose, biochemical, and hematological as well as urine profiles were investigated. RESULTS: There were no changes in observed parameters as a result of AS201-01 being administered. Statistical analysis showed no significant difference (p>0.05) between the test and control group regarding hematology profile, biochemical profile, and random blood glucose. Increased appetite and better sleep, which categorized as grade 1 adverse event was reported after treatment with AS201-01 tablet. CONCLUSIONS: The outcome supports our previous observation that the AS201-01 tablet, given twice a day for 4 days, is safe and nontoxic.

3.
J Basic Clin Physiol Pharmacol ; 32(4): 839-844, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214314

RESUMO

OBJECTIVES: The rapid spread of antimalarial drug resistance is becoming a problem in the treatment of malaria. The fact was indicated the importance of finding new antimalarial drugs. The genus Garcinia is well known to be a rich source of bioactive prenylated xanthones and triterpenes reported for their antimalarial activity. Garcinia parvifolia is one of the Garcinia genera that can be explored for the search of new antimalarial drugs. This study was aimed to determine the antimalarial activities of G. parvifolia extracts and fractions. METHODS: Garcinia parvifolia Miq. stem was collected from Balikpapan Botanical Garden in East Kalimantan, Indonesia, was extracted gradually with n-hexane, dichloromethane, and methanol by ultrasonic assisted method. The most active extract was further separated using the open column chromatography method. All extracts and fractions were tested against Plasmodium falciparum 3D7 using lactate dehydrogenase (LDH) assay and followed by IC50 determination. RESULTS: The results showed that all extracts inhibit P. falciparum growth by LDH assay. The highest inhibition was showed by dichloromethane stem extract (BP12-S-D) with the IC50 value of 6.61 ± 0.09 µg/mL. Further fractionation of BP12-S-D has obtained 10 fractions. All of them were identified by TLC, and a brownish-yellow spot (fraction-1) appears after spraying with 10% H2SO4. Fraction-1 (F1) performed the highest parasite growth inhibition with the IC50 value of 6.00 ± 0.03 µg/mL compared with other fractions. This fraction was classified as having a promising activity of antimalarial. The fraction-1 was identified using HPLC, and two major peaks were observed (A and B). The UV-Vis spectra showed the absorption at wavelengths 250 and 278 (A), 243, 281, and 317 nm (B). Based on the profile of TLC, HPLC, and UV-Vis spectra of F1, it was expected that the active compounds are flavonoid (A) and xanthone (B). CONCLUSIONS: The fraction-1 of dichloromethane extract of G. parvifolia Miq. stem has the highest antimalarial activity. It might be a potential candidate for the new antimalarial drug.


Assuntos
Antimaláricos , Garcinia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , L-Lactato Desidrogenase , Cloreto de Metileno , Extratos Vegetais/farmacologia , Plasmodium falciparum
4.
J Basic Clin Physiol Pharmacol ; 32(4): 853-858, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214326

RESUMO

OBJECTIVES: The finding of alternative medicine for malarial treatment still has become a substantial demand. The plant is one of the potential sources of drugs, among other natural sources. Artocarpus species showed great potential as the antimalarial source. This study aims to obtain active antimalarial fractions from Artocarpus sericicarpus stem bark. METHODS: Stem bark of A. sericicarpus was extracted by ultrasonic-assisted extraction method using n-hexane, dichloromethane, and methanol as solvents. Fractionation of dichloromethane extract was conducted by open column chromatography using octadecyl silica as a stationary phase and gradient acetonitrile-water as a mobile phase. The antimalarial activity was determined by lactate dehydrogenase (LDH) assay against Plasmodium falciparum 3D7 strain. RESULTS: A. sericicarpus n-hexane, dichloromethane, and methanol extracts were showed antimalarial activity with an IC50 value of >4, 2.11, and >4 µg/mL, respectively. Fractionation of dichloromethane extract was obtained 13 fractions. Seven of the 13 fractions tested showed antimalarial activity. Fraction-6 performed the highest inhibition with an IC50 value of 1.53 ± 0.04 µg/mL. Phytochemistry screening revealed that Fraction-6 contains flavonoid, polyphenol, and terpenoid compounds that can take a role in its antimalarial activity. CONCLUSIONS: A. sericicarpus contains antimalarial substances mainly in Fraction-6, which strongly inhibited the growth of P. falciparum. The flavonoid, polyphenol, and terpenoid compounds were identified in Fraction-6, which need to be further isolated to obtain and elucidate the active antimalarial compounds.


Assuntos
Antimaláricos , Artocarpus , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Metanol , Cloreto de Metileno , Casca de Planta , Extratos Vegetais/farmacologia , Plasmodium falciparum , Polifenóis , Terpenos
5.
J Basic Clin Physiol Pharmacol ; 32(4): 817-822, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214334

RESUMO

OBJECTIVES: The antimalarial drug resistance is an obstacle in the effort to overcome malaria. The new alternative antimalarial drug became in great attention of urgent need. Current antimalarial drugs were derived from plants. Therefore, the plant is considering a potential source of new drugs. Cratoxylum sumatranum belongs to the Hypericaceae family contain xanthones and phenolic compounds, which was reported for their antimalarial activities. This study aims to determine the antimalarial activities of C. sumatranum extracts and fractions. METHODS: Cratoxylum  sumatranum stem bark (BP14-SB) collected from Balikpapan Botanical Garden in East Kalimantan, Indonesia, was extracted gradually with n-hexane, dichloromethane, and methanol by ultrasonic-assisted extraction method. All extracts were tested against Plasmodium falciparum 3D7 by lactate dehydrogenase (LDH) assay and followed by IC50 determination. The most active extract was further separated and tested for their antimalarial activities. RESULTS: The results showed that dichloromethane stem bark extract (BP14-SB-D) had the strongest inhibition of parasite growth with the IC50 value of 0.44 ± 0.05 µg/mL and moderately toxic with the CC50 value of 29.09 ± 0.05 µg/mL. Further fractionation of BP14-SB-D by open column chromatography using silica gel and gradient hexane-ethyl acetate obtained 12 fractions. LDH assay for these 12 fractions of BP14-SB-D showed that Fraction-6 (IC50 value of 0.19 ± 0.03 µg/mL) was performed the strongest inhibition of parasite growth, compared to other fractions. TLC identification showed that BP14-SB-D contains xanthone. CONCLUSIONS: The dichloromethane extract of C. sumatranum stem bark (BP14-SB-D) and Fraction-6 from this extract exhibited antimalarial activity and the potential to be developed an antimalarial substance.


Assuntos
Antimaláricos , Clusiaceae , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , L-Lactato Desidrogenase , Cloreto de Metileno , Casca de Planta , Extratos Vegetais/farmacologia , Plasmodium falciparum
6.
Artigo em Inglês | MEDLINE | ID: mdl-33747115

RESUMO

OBJECTIVES: To determine the analgesic and antipyretic activities of a tablet derived from Andrographis paniculata ethyl acetate fraction (AS201-01) in animal models. METHODS: The tablet derived from AS201-01 contains an equivalent of 35 mg andrographolide per tablet. Analgesic activity was determined using an acetic acid-induced writhing test on adult male mice. A writhe was recorded by a stopwatch and was defined as the stretching of the abdomen and/or stretching of at least one hind limb. For the determination of antipyretic activity, pyrexia was induced by subcutaneous injection of 15% w/v Brewer's yeast into adult male rats. Rectal temperature was monitored at 1, 2, 3, and 4 hours after treatment. RESULTS: The results showed that the AS201-01 tablet had analgesic and antipyretic activity. In the acetic acid-induced writhing model, AS201-01 tablet exhibited significant analgesic effect with a 66.73% reduction in writhing response at a dose of 50 mg andrographolide/kg body weight compared to the negative control group. The tablet also showed a significant antipyretic effect. The maximum antipyretic effect was observed after the third hour of administration of the AS201-01 tablet at a dose of 100 mg andrographolide/kg body weight. CONCLUSION: Tablet of Andrographis paniculata ethyl acetate fraction (AS201-01) exhibited analgesic and antipyretic activities.

7.
J Basic Clin Physiol Pharmacol ; 33(2): 175-183, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33580999

RESUMO

OBJECTIVES: The use of standard antimalarial drugs, such as dihydroartemisinin-piperaquine (DHP) for the treatment of malaria during pregnancy is limited due to the risk of teratogenicity. The alternative is therefore required although few exist. Here we show a phytopharmaceutical drug derived from Andrographis paniculata (AS201-01), which is effective as herbal antimalarial both in vitro and in vivo and may be a suitable alternative when used in complementary treatment with DHP. METHODS: Plasmodium berghei infected pregnant BALB/c mice were divided into four groups: G1 (negative control), G2 (AS201-01), G3 (DHP), and G4 (combination of DHP and AS201-01). Pheripheral blood was collected during therapy for counting parasitemia. Placental samples were analyzed for the expression of IFN-γ, TNF- α, IL-10, placental parasite counts and foetal morphology. RESULTS: Groups G4 and G3 both showed a 100% inhibition of peripheral parasitemia. However, the treatment in G4 was found to be less effective than that in G2 and G3 in preventing placental parasitemia. The G4 treatment was able to reduce the expression of IFN-γ and IL-10, whereas TNF-α was not significantly different from the control group. Foetal morphologic abnormalities were observed in all groups except G2; G4 showed lower percentage of abnormalities compared to G3 and G1. CONCLUSIONS: A combination of A. paniculata tablet (AS201-01) with DHP has the potential to reduce the toxicity of DHP in malaria treatment.


Assuntos
Andrographis paniculata , Malária , Animais , Artemisininas , Feminino , Malária/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Piperazinas , Placenta , Gravidez , Quinolinas , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA