Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(5): e1002021, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21573143

RESUMO

Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.


Assuntos
Clorofila/biossíntese , Satélite do Vírus do Mosaico do Pepino/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Interferência de RNA , RNA Viral/genética , Arabidopsis/genética , Arabidopsis/virologia , Sequência de Bases , Capsicum/genética , Capsicum/virologia , Clorofila/genética , Satélite do Vírus do Mosaico do Pepino/metabolismo , Cucumovirus/metabolismo , Cucumovirus/patogenicidade , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Liases/genética , Liases/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Fenótipo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Nicotiana/enzimologia , Nicotiana/genética
2.
Plant J ; 65(1): 156-168, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175898

RESUMO

Gene silencing through transcriptional repression can be induced by targeting double-stranded RNA (dsRNA) to a gene promoter. It has been reported that a transgene was silenced by targeting dsRNA to the promoter, and the silenced state was inherited to the progeny plant even after removal of the silencing inducer from cells. In contrast, no plant has been produced that harbors silenced endogenous gene after removal of promoter-targeting dsRNA. Here, we show that heritable gene silencing can be induced by targeting dsRNA to the endogenous gene promoters in petunia and tomato plants, using the Cucumber mosaic virus (CMV)-based vector. We found that efficient silencing of endogenous genes depends on the function of the 2b protein encoded in the vector virus, which has the ability to facilitate epigenetic modifications through the transport of short interfering RNA to nucleus. Bisulfite sequencing analyses on the targeted promoter in the virus-infected and its progeny plants revealed that cytosine methylation was found not only at CG or CNG but also at CNN sites. The observed inheritance of asymmetric DNA methylation is quite unique, suggesting that plants have a mechanism to maintain even asymmetric methylation. This CMV-based gene silencing system provides a useful tool to artificially modify DNA methylation in plant genomes and elucidate the mechanism for epigenetic controls.


Assuntos
Cucumovirus/genética , Inativação Gênica/fisiologia , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/metabolismo , Metilação de DNA , Flores/genética , Flores/metabolismo , Flores/fisiologia , Petunia/genética , Petunia/metabolismo , Petunia/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Pólen/genética , Pólen/metabolismo , Pólen/fisiologia , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA