Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121903, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209714

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is used to identify the biochemical changes associated with the antifungal activities of selenium and zinc organometallic complexes against Aspergillus niger fungus. These biochemical changes identified in the form of SERS peaks can help to understand the mechanism of action of these antifungal agents which is important for development of new antifungal drugs. The SERS spectral changes indicate the denaturation and conformational changes of proteins and fungal cell wall decomposition in complex exposed fungal samples. The SERS spectra of these organometallic complexes exposed fungi are analyzed by using statistical tools like principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). PCA is employed to differentiate the SERS spectra of fungal samples exposed to ligands and complexes. The PLS-DA discriminated different groups of spectra with 99.8% sensitivity, 100% specificity, 98% accuracy and 86 % area under receiver operating characteristic (AUROC) curve.


Assuntos
Compostos Organometálicos , Selênio , Antifúngicos/farmacologia , Selênio/farmacologia , Zinco/farmacologia , Análise Espectral Raman/métodos , Análise Discriminante , Análise de Componente Principal
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120823, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998053

RESUMO

In this study, Raman spectroscopy is employed to analyze and characterize two salts (N-heterocyclic carbene) and their respective selenium N-heterocyclic carbene compounds. The features observed as differences among Raman spectral data of two different N-heterocyclic carbene salts are called Salt-I and Salt-II and their respective Se compounds, called Compound-I & Compound-II, are used to confirm the formation covalent bond between Se atom carbon atom of carbene. Enhancement in peak intensities and shifting of peak positions is directly related with compound formation. Raman spectral data provide a detail information about bond formation, chemical and structural differences between salts and compounds. The observed Raman spectral features of both salts and compounds are in consistent with computationally calculated Raman spectral features. Raman spectral features of each salt and its respective compound was further analyzed with principal component analysis, which was found helpful for differentiating each salt from its respective compound.


Assuntos
Compostos Heterocíclicos , Compostos de Selênio , Selênio , Metano/análogos & derivados , Análise Espectral Raman
3.
Comput Biol Chem ; 94: 107567, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500323

RESUMO

Benzimidazolium salts (3-6) were synthesized as stable N-Heterocyclic Carbene (NHC) precursors and their selenium-NHC compounds/Selenones (7-10) were prepared using water as a solvent. Characterization of each of the synthesized compounds was carried out by various analytical and spectroscopic (FT-IR, 1H-, 13C NMR) methods. X-ray crystallographic analyses of single crystals obtained for salts 3 and 5 were carried out. Synthesized salts and their Se-NHCs were tested in-vitro for their anticancer potential against Cervical Cancer Cell line from Henrietta Lacks (HeLa), Breast cancer cell line (MDA-MB-231), Adenocarcinoma cell line (A549) and human normal endothelial cell line (EA.hy926). MTT assay was used for analysis and compared with standard drug 5-flourouracil. Benzimidazolium salts (3-6) and their selenium counter parts (7-10) were found potent anticancer agents. Salt 3-5 were found to be potent anticancer against HeLa with IC50 values 0.072, 0.017 and 0.241 µM, respectively, which are less than standard drug (4.9 µM). The Se-NHCs (7-10) had also shown significant anticancer potential against HeLa with IC50 values less than standard drug. Salts 3, 4 against EA.hy926, compounds 3,5,6, and 10 against MDA-MB-321, and compounds 4, 10 against A-549 cell line were found more potent anticancer agents with IC50 values less than standard drug. Molecular docking for (7-10) showed their good anti-angiogenic potential having low binding energy and significant inhibition constant values with VEGFA (vascular endothelial growth factor), EGF (human epidermal growth factor), COX1 (cyclooxygenase-1) and HIF (hypoxia inducible factor).


Assuntos
Antineoplásicos/farmacologia , Técnicas de Química Sintética , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Simulação de Acoplamento Molecular , Selênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Humanos , Ligantes , Metano/química , Metano/farmacologia , Selênio/química , Células Tumorais Cultivadas
4.
Microvasc Res ; 107: 17-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27133199

RESUMO

We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06µM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Nicotiana , Escopoletina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/química , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Nus , Microvasos/efeitos dos fármacos , Microvasos/patologia , Proteína Quinase 3 Ativada por Mitógeno/química , Neovascularização Patológica , Fitoterapia , Plantas Medicinais , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Conformação Proteica , Ratos Sprague-Dawley , Escopoletina/isolamento & purificação , Escopoletina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Nicotiana/química , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Pharm Pharmacol ; 66(10): 1394-409, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039905

RESUMO

OBJECTIVES: Recently, we have isolated koetjapic acid (KA) from Sandoricum koetjape and identified its selective anticancer potentiality against colorectal carcinoma. KA is quite likely to be useful as a systemic anticancer agent against colorectal malignancy. However, with extremely low solubility, KA has to be converted into a biocompatible solubilized form without compromising the bioefficacy. Objective of this study is to enhance solubility of KA and to evaluate anticancer efficacy of potassium koetjapate in human colorectal cancer cells. METHODS: (2-Hydroxypropyl)-ß-cyclodextrin inclusion complex and solid dispersions (carboxymethyl cellulose, polyvinylpyrrolidone and sodium lauryl sulphate) of KA were prepared. In addition, a salt of KA, potassium koetjapate was synthesized. KEY FINDINGS: Potassium koetjapate demonstrated higher solubility than the other tested formulations with enhanced cytotoxicity against HCT 116 cells. The enhanced efficacy of potassium koetjapate is attributed to apoptotic induction of nuclear condensation and disruption of mitochondrial membrane potential in the cells. Interestingly, potassium koetjapate was found to be safe in rats after oral administration (LD50 > 2000 mg/kg). CONCLUSIONS: The salt formulation of KA appears to modulate the capability of the parent compound by enhancing its solubility and improves its bioefficacy against colon cancer cells, suggesting attractive roles for its applications in medicine.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Meliaceae/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Potássio/química , Triterpenos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Química Farmacêutica , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solubilidade , Triterpenos/química , Triterpenos/farmacologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA