Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MAGMA ; 36(5): 749-766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36877425

RESUMO

OBJECTIVE: Magnetic nanoparticles (MNPs) are considered a theranostic agent in MR imaging, playing an effective role in inducing magnetic hyperthermia. Since, high-performance magnetic theranostic agents are characterized by superparamagnetic behavior and high anisotropy, in this study, cobalt ferrite MNPs were optimized and investigated as a theranostic agent. METHODS: CoFe2O4@Au@dextran particles were synthesized and characterized by DLS, HRTEM, SEM, XRD, FTIR, and VSM methods. After cytotoxicity evaluation, MR imaging parameters (r1, r2 and r2 / r1) were calculated for these nanostructures. Afterward, magnetic hyperthermia at the frequency of 425 kHz was applied to calculate specific loss power (SLP). RESULTS: Formation of CoFe2O4@Au@dextran was confirmed by UV-Visible spectrophotometry. On the basis of the relaxometric and hyperthermia induction findings of nanostructures in all stages of synthesis, the CoFe2O4@Au@dextran could produce the highest parameters of r2 and r2/r1 and SLP with values ​​of 389.7, 51.2 mM-1 s-1, and 2449 W/g, respectively. CONCLUSION: The formation of multi-core MNPs by dextran coating is expected to improve the magnetic properties of the nanostructure, leading to optimization of theranostic parameters, so that CoFe2O4@Au@dextran NPs can create contrast-enhanced images more than three times the clinical use and require less contrast agent, reducing side effects. Accordingly, CoFe2O4@Au@dextran can be introduced as a suitable theranostic nanostructure with optimal efficiency.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Medicina de Precisão , Dextranos , Compostos Férricos/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética
2.
Lasers Med Sci ; 37(5): 2387-2395, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35066676

RESUMO

The combination of multiple therapeutic and diagnostic functions is fast becoming a key feature in the area of clinical oncology. The advent of nanotechnology promises multifunctional nanoplatforms with the potential to deliver multiple therapeutics while providing diagnostic information simultaneously. In this study, novel iron oxide-gold core-shell hybrid nanocomposites (Fe3O4@Au HNCs) coated with alginate hydrogel carrying doxorubicin (DOX) were constructed for targeted photo-chemotherapy and magnetic resonance imaging (MRI). The magnetic core enables the HNCs to be detected through MRI and targeted towards the tumor using an external magnetic field, a method known as magnetic drug targeting (MDT). The Au shell could respond to light in the near-infrared (NIR) region, generating a localized heating for photothermal therapy (PTT) of the tumor. The cytotoxicity assay showed that the treatment of CT26 colon cancer cells with the DOX-loaded HNCs followed by laser irradiation induced a significantly higher cell death as opposed to PTT and chemotherapy alone. The in vivo MRI study proved MDT to be an effective strategy for targeting the HNCs to the tumor, thereby enhancing their intratumoral concentration. The antitumor study revealed that the HNCs can successfully combine chemotherapy and PTT, resulting in superior therapeutic outcome. Moreover, the use of MDT following the injection of HNCs caused a more extensive tumor shrinkage as compared to non-targeted group. Therefore, the as-prepared HNCs could be a promising nanoplatform for image-guided targeted combination therapy of cancer.


Assuntos
Nanocompostos , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina , Ouro/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Neoplasias/terapia , Fototerapia
3.
ACS Appl Bio Mater ; 4(5): 4280-4291, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006840

RESUMO

The integration of multiple therapeutic and diagnostic functions into a single nanoplatform for image-guided cancer therapy has been an emerging trend in nanomedicine. We show here that multifunctional theranostic nanostructures consisting of superparamagnetic iron oxide (SPIO) and gold nanoparticles (AuNPs) scaffolded within graphene oxide nanoflakes (GO-SPIO-Au NFs) can be used for dual photo/radiotherapy by virtue of the near-infrared (NIR) absorbance of GO for photothermal therapy (PTT) and the Z element radiosensitization of AuNPs for enhanced radiation therapy (RT). At the same time, this nanoplatform can also be detected by magnetic resonance (MR) imaging because of the presence of SPIO NPs. Using a mouse carcinoma model, GO-SPIO-Au NF-mediated combined PTT/RT exhibited a 1.85-fold and 1.44-fold higher therapeutic efficacy compared to either NF-mediated PTT or RT alone, respectively, resulting in a complete eradication of tumors. As a sensitive multifunctional theranostic platform, GO-SPIO-Au NFs appear to be a promising nanomaterial for enhanced cancer imaging and therapy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carcinoma/tratamento farmacológico , Imageamento por Ressonância Magnética , Fototerapia , Radiossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacologia , Grafite/química , Grafite/farmacologia , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Radiossensibilizantes/síntese química , Radiossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
4.
Cancer Chemother Pharmacol ; 84(6): 1315-1321, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31559450

RESUMO

PURPOSE: The aim of the present study was to develop a new strategy for combined thermo-chemotherapy of cancer. For this purpose, we used ultrasound waves [1 MHz; 1 W/cm2; 10 min] in combination with a sonosensitizing nanoplatform, named ACA, made of alginate co-loaded with cisplatin and gold nanoparticles (AuNPs). METHODS: Various combinatorial treatment regimens consisting of ultrasound, AuNPs, cisplatin, and ACA nanoplatform were studied in vivo. The CT26 colon adenocarcinoma cell line was used for tumor induction in BALB/c mice. During the ultrasound exposure, we monitored the temperature variations in each treatment group using infrared thermal imaging. Furthermore, tumor metabolism was assessed by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging. RESULTS: The combination of ultrasound with nanoplatform showed an improved therapeutic efficacy than free cisplatin or ultrasound alone. It was revealed that the examined thermo-chemotherapy protocol has the potential to intensively decrease the metabolic activity of CT26 tumors. CONCLUSIONS: The data obtained in this study confirmed a potent anti-tumor efficacy caused by the ACA nanoplatform and ultrasound combination. It may provide a beneficial cancer therapy strategy in which the thermal and mechanical effects of ultrasound can intensify the therapeutic ratio of conventional chemotherapy methods.


Assuntos
Cisplatino/administração & dosagem , Portadores de Fármacos/efeitos da radiação , Hipertermia Induzida/métodos , Neoplasias/terapia , Terapia por Ultrassom/métodos , Alginatos/química , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Fluordesoxiglucose F18/administração & dosagem , Ouro/química , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Artif Cells Nanomed Biotechnol ; 46(8): 1594-1604, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28994325

RESUMO

This study reports the synthesis and characterization of poly(ethylene glycol) coated gold@iron oxide core-shell nanoparticles conjugated with folic acid (FA-PEG-Au@IONP). Also, targeted therapeutic properties of such a nanocomplex were studied on human nasopharyngeal carcinoma cell line KB and human breast adenocarcinoma cell line MCF-7 in vitro. The synthesized nanocomplex was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-Vis spectroscopy, vibrating sample magnetometry (VSM), and Fourier transform infrared (FTIR) spectroscopy. The photothermal effects of nanocomplex on both KB and MCF-7 cell lines were studied. Cell death and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry using an annexin V-fluorescein isothiocyanate/propidiumiodide apoptosis detection kit. It was found that nanocomplex is spherical in shape and its size is approximately 60 nm. UV-vis spectrum showed that nanocomplex has appropriate absorption near infrared region. FTIR spectra obtained from nanocomplex before and after conjugation with FA confirmed the formation of folate conjugated nanocomplex. Significant cell lethality was observed for KB (∼62%) and MCF-7 (∼33%) cells following photothermal therapy. Also, it was found that majority of the cell deaths were related to apoptosis process. It can be concluded that, the synthesized nanocomplex is an effective and promising multifunctional nanoplatform for targeted photothermal therapy of cancer.


Assuntos
Compostos Férricos , Ácido Fólico , Ouro , Hipertermia Induzida , Nanoconjugados , Neoplasias/terapia , Fototerapia , Polietilenoglicóis , Compostos Férricos/química , Compostos Férricos/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7 , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA