Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 17(5): 051002, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052884

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH: We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS: We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE: This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.


Assuntos
Gânglios da Base , Estimulação Encefálica Profunda , Eletrodos Implantados , Tálamo
2.
Neurology ; 89(5): 432-438, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679598

RESUMO

OBJECTIVE: To investigate whether Mucuna pruriens (MP), a levodopa-containing leguminous plant growing in all tropical areas worldwide, may be used as alternative source of levodopa for indigent individuals with Parkinson disease (PD) who cannot afford long-term therapy with marketed levodopa preparations. METHODS: We investigated efficacy and safety of single-dose intake of MP powder from roasted seeds obtained without any pharmacologic processing. Eighteen patients with advanced PD received the following treatments, whose sequence was randomized: (1) dispersible levodopa at 3.5 mg/kg combined with the dopa-decarboxylase inhibitor benserazide (LD+DDCI; the reference treatment); (2) high-dose MP (MP-Hd; 17.5 mg/kg); (3) low-dose MP (MP-Ld; 12.5 mg/kg); (4) pharmaceutical preparation of LD without DDCI (LD-DDCI; 17.5 mg/kg); (5) MP plus benserazide (MP+DDCI; 3.5 mg/kg); (6) placebo. Efficacy outcomes were the change in motor response at 90 and 180 minutes and the duration of on state. Safety measures included any adverse event (AE), changes in blood pressure and heart rate, and the severity of dyskinesias. RESULTS: When compared to LD+DDCI, MP-Ld showed similar motor response with fewer dyskinesias and AEs, while MP-Hd induced greater motor improvement at 90 and 180 minutes, longer ON duration, and fewer dyskinesias. MP-Hd induced less AEs than LD+DDCI and LD-DDCI. No differences in cardiovascular response were recorded. CONCLUSION: Single-dose MP intake met all noninferiority efficacy and safety outcome measures in comparison to dispersible levodopa/benserazide. Clinical effects of high-dose MP were similar to levodopa alone at the same dose, with a more favorable tolerability profile. CLINICALTRIALSGOV IDENTIFIER: NCT02680977.


Assuntos
Antiparkinsonianos/uso terapêutico , Mucuna , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacocinética , Benserazida/efeitos adversos , Benserazida/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Discinesia Induzida por Medicamentos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Levodopa/efeitos adversos , Levodopa/farmacocinética , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Fitoterapia/efeitos adversos , Pós , Sementes , Resultado do Tratamento
3.
Brain ; 139(11): 2948-2956, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27658421

RESUMO

Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Marcha Atáxica/etiologia , Tálamo/fisiologia , Idoso , Idoso de 80 Anos ou mais , Biofísica , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Feminino , Fluordesoxiglucose F18/metabolismo , Marcha Atáxica/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
4.
J Neurol Sci ; 365: 175-80, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27206902

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurological condition. Levodopa (LD) is the gold standard therapy for PD patients. Most PD patients in low-income areas cannot afford long-term daily Levodopa therapy. The aim of our study was to investigate if Mucuna pruriens (MP), a legume with high LD content that grows in tropical regions worldwide, might be potential alternative for poor PD patients. METHODS: We analyzed 25 samples of MP from Africa, Latin America and Asia. We measured the content in LD in various MP preparations (dried, roasted, boiled). LD pharmacokinetics and motor response were recorded in four PD patients, comparing MP vs. LD+Dopa-Decarboxylase Inhibitor (DDCI) formulations. RESULTS: Median LD concentration in dried MP seeds was 5.29%; similar results were obtained in roasted powder samples (5.3%), while boiling reduced LD content up to 70%. Compared to LD+DDCI, MP extract at similar LD dose provided less clinical benefit, with a 3.5-fold lower median AUC. CONCLUSION: Considering the lack of a DDCI, MP therapy may provide clinical benefit only when content of LD is at least 3.5-fold the standard LD+DDCI. If long-term MP proves to be safe and effective in controlled clinical trials, it may be a sustainable alternative therapy for PD in low-income countries.


Assuntos
Antiparkinsonianos/sangue , Antiparkinsonianos/uso terapêutico , Levodopa/sangue , Levodopa/uso terapêutico , Mucuna/química , Doença de Parkinson/sangue , Doença de Parkinson/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Inibidores das Descarboxilases de Aminoácidos Aromáticos/sangue , Inibidores das Descarboxilases de Aminoácidos Aromáticos/uso terapêutico , Composição de Medicamentos/economia , Composição de Medicamentos/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fitoterapia/métodos , Extratos Vegetais/química , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA