Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Pharmacol ; 63(3): 363-372, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36309846

RESUMO

The mechanism of cytochrome P450 2D6 (CYP2D6) induction during pregnancy has not been evaluated in humans. This study assessed the changes in CYP2D6 and CYP3A activities during pregnancy and postpartum, and the effect of vitamin A administration on CYP2D6 activity. Forty-seven pregnant CYP2D6 extensive metabolizers (with CYP2D6 activity scores of 1 to 2) received dextromethorphan (DM) 30 mg orally as a single dose during 3 study windows (at 25 to 28 weeks of gestation, study day 1; at 28 to 32 weeks of gestation, study day 2; and at ≥3 months postpartum, study day 3). Participants were randomly assigned to groups with no supplemental vitamin A (control) or with supplemental vitamin A (10 000 IU/day orally for 3 to 4 weeks) after study day 1. Concentrations of DM and its metabolites, dextrorphan (DX) and 3-hydroxymorphinan (3HM), were determined from a 2-hour post-dose plasma sample and cumulative 4-hour urine sample using liquid chromatography-mass spectrometry. Change in CYP2D6 activity was assessed using DX/DM plasma and urine metabolic ratios. The activity change in CYP3A was also assessed using the 3HM/DM urine metabolic ratio. The DX/DM urine ratio was significantly higher (43%) in pregnancy compared with postpartum (P = .03), indicating increased CYP2D6 activity. The DX/DM plasma ratio was substantially higher in the participants, with an activity score of 1.0 during pregnancy (P = .04) compared with postpartum. The 3HM/DM urinary ratio was significantly higher (92%) during pregnancy, reflecting increased CYP3A activity (P = .02). Vitamin A supplementation did not change CYP2D6 activity during pregnancy; however, plasma all-trans retinoic acid (atRA) concentrations were positively correlated with increased CYP2D6 activity during pregnancy and postpartum. Further research is needed to elucidate the mechanisms of increased CYP2D6 activity during pregnancy.


Assuntos
Citocromo P-450 CYP2D6 , Vitamina A , Feminino , Humanos , Gravidez , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A , Fenótipo , Dextrometorfano , Suplementos Nutricionais
2.
Cell Host Microbe ; 30(8): 1084-1092.e5, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863343

RESUMO

Conversion of dietary vitamin A (VA) into retinoic acid (RA) is essential for many biological processes and thus far studied largely in mammalian cells. Using targeted metabolomics, we found that commensal bacteria in the mouse gut lumen produced a high concentration of the active retinoids, all-trans-retinoic acid (atRA) and 13-cis-retinoic acid (13cisRA), as well as the principal circulating retinoid, retinol. Ablation of anerobic bacteria significantly reduced retinol, atRA, and 13cisRA, whereas introducing these bacteria into germ-free mice significantly enhanced retinoids. Remarkably, cecal bacterial supplemented with VA produced active retinoids in vitro, establishing that gut bacteria encode metabolic machinery necessary for multistep conversion of dietary VA into its active forms. Finally, gut bacteria Lactobacillus intestinalis metabolized VA and specifically restored RA levels in the gut of vancomycin-treated mice. Our work establishes vitamin A metabolism as an emergent property of the gut microbiome and lays the groundwork for developing probiotic-based retinoid therapy.


Assuntos
Tretinoína , Vitamina A , Animais , Mamíferos , Camundongos , Retinoides/metabolismo , Tretinoína/metabolismo , Vitamina A/metabolismo
3.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982436

RESUMO

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.


Assuntos
Alternativas ao Uso de Animais/métodos , Técnicas de Cultura de Células em Três Dimensões , Avaliação Pré-Clínica de Medicamentos/métodos , Alternativas ao Uso de Animais/normas , Células Cultivadas , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/normas , Humanos , Intestinos/citologia , Rim/citologia , Fígado/citologia , Neurônios , Esferoides Celulares , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Estados Unidos , United States Food and Drug Administration/normas
4.
Clin Pharmacol Ther ; 108(6): 1254-1264, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32558923

RESUMO

In vitro, esomeprazole is a time-dependent inhibitor of CYP2C19. Additionally, racemic omeprazole induces CYP1A2 and omeprazole and its metabolites inhibit CYP3A4 in vitro. In this 5-phase study, 10 healthy volunteers ingested 20 mg pantoprazole, 0.5 mg midazolam, and 50 mg caffeine as respective index substrates for CYP2C19, 3A4, and 1A2 before and 1, 25, 49 (pantoprazole only), and 73 hours after an 8-day pretreatment with 80 mg esomeprazole twice daily. The area under the plasma concentration-time curve (AUC) of R-pantoprazole increased 4.92-fold (90% confidence interval (CI) 3.55-6.82), 2.31-fold (90% CI 1.85-2.88), and 1.33-fold (90% CI 1.06-1.68) at the 1-hour, 25-hour, and 73-hour phases, respectively, consistent with a substantial and persistent inhibition of CYP2C19. The AUC of midazolam increased up to 1.44-fold (90% CI 1.22-1.72) and the paraxanthine/caffeine metabolic ratio up to 1.19-fold (90% CI 1.04-1.36), when the index substrates were taken 1 hour after esomeprazole. Based on the recovery of R-pantoprazole oral clearance, the turnover half-life of CYP2C19 was estimated to average 53 hours. Pharmacokinetic simulation based on the observed concentrations of esomeprazole and its metabolites as well as their published CYP2C19 inhibitory constants was well in line with the observed changes in R-pantoprazole pharmacokinetics during the course of the study. Extrapolations assuming linear pharmacokinetics of esomeprazole suggested weak to moderate inhibition at 20 and 40 mg twice daily dosing. In conclusion, high-dose esomeprazole can cause strong inhibition of CYP2C19, but only weakly inhibits CYP3A4 and leads to minor induction of CYP1A2. The enzymatic activity of CYP2C19 recovers gradually in ~ 3-4 days after discontinuation of esomeprazole treatment.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Esomeprazol/farmacologia , Administração Oral , Cafeína/farmacocinética , Estudos Cross-Over , Indutores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP2C19/genética , Inibidores do Citocromo P-450 CYP2C19/administração & dosagem , Inibidores do Citocromo P-450 CYP2C19/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Esomeprazol/administração & dosagem , Esomeprazol/farmacocinética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Midazolam/farmacocinética , Modelos Biológicos , Pantoprazol/farmacocinética , Variantes Farmacogenômicos
5.
PLoS Pathog ; 16(4): e1008360, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32330185

RESUMO

Intestinal epithelial cells (IECs) are at the forefront of host-pathogen interactions, coordinating a cascade of immune responses to protect against pathogens. Here we show that IEC-intrinsic vitamin A signaling restricts pathogen invasion early in the infection and subsequently activates immune cells to promote pathogen clearance. Mice blocked for retinoic acid receptor (RAR) signaling selectively in IECs (stopΔIEC) showed higher Salmonella burden in colonic tissues early in the infection that associated with higher luminal and systemic loads of the pathogen at later stages. Higher pathogen burden in stopΔIEC mice correlated with attenuated mucosal interferon gamma (IFNγ) production by underlying immune cells. We found that, at homeostasis, the intestinal epithelium of stopΔIEC mice produced significantly lower amounts of interleukin 18 (IL-18), a potent inducer of IFNγ. Regulation of IL-18 by vitamin A was also observed in a dietary model of vitamin A supplementation. IL-18 reconstitution in stopΔIEC mice restored resistance to Salmonella by promoting epithelial cell shedding to eliminate infected cells and limit pathogen invasion early in infection. Further, IL-18 augmented IFNγ production by underlying immune cells to restrict pathogen burden and systemic spread. Our work uncovers a critical role for vitamin A in coordinating a biphasic immune response to Salmonella infection by regulating IL-18 production by IECs.


Assuntos
Microbioma Gastrointestinal , Interleucina-18/metabolismo , Mucosa Intestinal/imunologia , Proteínas Associadas aos Microtúbulos/fisiologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/imunologia , Vitamina A/metabolismo , Animais , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Ácido Retinoico/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais
6.
Clin Transl Sci ; 12(2): 113-121, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30740886

RESUMO

The recently enacted Prescription Drug User Fee Act (PDUFA) VI includes in its performance goals "enhancing regulatory science and expediting drug development." The key elements in "enhancing regulatory decision tools to support drug development and review" include "advancing model-informed drug development (MIDD)." This paper describes (i) the US Food and Drug Administration (FDA) Office of Clinical Pharmacology's continuing efforts in developing quantitative clinical pharmacology models (disease, drug, and clinical trial models) to advance MIDD, (ii) how emerging novel tools, such as organ-on-a-chip technologies or microphysiological systems, can provide new insights into physiology and disease mechanisms, biomarker identification and evaluation, and elucidation of mechanisms of adverse drug reactions, and (iii) how the single organ or linked organ microphysiological systems can provide critical system parameters for improved physiologically-based pharmacokinetic and pharmacodynamic evaluations. Continuous public-private partnerships are critical to advance this field and in the application of these new technologies in drug development and regulatory review.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Dispositivos Lab-On-A-Chip , Farmacologia Clínica/instrumentação , Engenharia Tecidual , Humanos , Estados Unidos
7.
Clin Infect Dis ; 66(12): 1872-1882, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471387

RESUMO

Background: Cannabis is a widely used drug in the United States, and the frequency of cannabis use in the human immunodeficiency virus (HIV)-infected population is disproportionately high. Previous human and macaque studies suggest that cannabis may have an impact on plasma viral load; however, the relationship between cannabis use and HIV-associated systemic inflammation and immune activation has not been well defined. Methods: The impact of cannabis use on peripheral immune cell frequency, activation, and function was assessed in 198 HIV-infected, antiretroviral-treated individuals by flow cytometry. Individuals were categorized into heavy, medium, or occasional cannabis users or noncannabis users based on the amount of the cannabis metabolite 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) detected in plasma by mass spectrometry. Results: Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals. Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells. Conclusions: While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Abuso de Maconha/imunologia , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Dronabinol/análogos & derivados , Dronabinol/sangue , Feminino , Citometria de Fluxo , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
8.
Biochem Pharmacol ; 77(2): 258-68, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18992717

RESUMO

Retinoic acid (RA) is a critical signaling molecule that performs multiple functions required to maintain cellular viability. It is also used in the treatment of some cancers. Enzymes in the CYP26 family are thought to be responsible for the elimination of RA, and CYP26A1 appears to serve the most critical functions in this family. In spite of its importance, CYP26A1 has neither been heterologously expressed nor characterized kinetically. We expressed the rCYP26A1 in baculovirus-infected insect cells and purified the hexahistidine tagged protein to homogeneity. Heme incorporation was determined by carbon monoxide difference spectrum and a type 1 spectrum was observed with RA binding to CYP26A1. We found that RA is a tight binding ligand of CYP26A1 with low nM binding affinity. CYP26A1 oxidized RA efficiently (depletion K(m) 9.4+/-3.3nM and V(max) 11.3+/-4.3pmolesmin(-1)pmoleP450(-1)) when supplemented with P450 oxidoreductase and NADPH but was independent of cytochrome b5. 4-Hydroxy-RA (4-OH-RA) was the major metabolite produced by rCYP26A1 but two other primary products were also formed. 4-OH-RA was further metabolized by CYP26A1 to more polar metabolites and this sequential metabolism of RA occurred in part without 4-OH-RA leaving the active site of CYP26A1. The high efficiency of CYP26A1 in eliminating both RA and its potentially active metabolites supports the major role of this enzyme in regulating RA clearance in vivo. These results provide a biochemical framework for CYP26A1 function and offer insight into the role of CYP26A1 as a drug target as well as in fetal development and cell cycle regulation.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sequência de Bases , Ciclo Celular/fisiologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Sistema Enzimático do Citocromo P-450/metabolismo , Primers do DNA , Amplificação de Genes , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Rim/embriologia , Rim/enzimologia , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ácido Retinoico 4 Hidroxilase , Tretinoína/metabolismo
9.
Br J Pharmacol ; 139(4): 755-64, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12812999

RESUMO

1 The purpose of this study was to synthesize novel valproyltaurine (VTA) derivatives including valproyltaurinamide (VTD), N-methyl-valproyltaurinamide (M-VTD), N,N-dimethyl-valproyltaurinamide (DM-VTD) and N-isopropyl-valproyltaurinamide (I-VTD) and evaluate their structure-pharmacokinetic-pharmacodynamic relationships with respect to anticonvulsant activity and teratogenic potential. However, their hepatotoxic potential could not be evaluated. The metabolism and pharmacokinetics of these derivatives in mice were also studied. 2 VTA lacked anticonvulsant activity, but VTD, DM-VTD and I-VTD possessed anticonvulsant activity in the Frings audiogenic seizure susceptible mice (ED(50) values of 52, 134 and 126 mg kg(-1), respectively). 3 VTA did not have any adverse effect on the reproductive outcome in the Swiss Vancouver/Fnn mice following a single i.p. injection of 600 mg kg(-1) on gestational day (GD) 8.5. VTD (600 mg kg(-1) at GD 8.5) produced an increase in embryolethality, but unlike valproic acid, it did not induce congenital malformations. DM-VTD and I-VTD (600 mg kg(-1) at GD 8.5) produced a significant increase in the incidence of gross malformations. The incidence of birth defects increased when the length of the alkyl substituent or the degree of N-alkylation increased. 4 In mice, N-alkylated VTDs underwent metabolic N-dealkylation to VTD. DM-VTD was first biotransformed to M-VTD and subsequently to VTD. I-VTD's fraction metabolized to VTD was 29%. The observed metabolic pathways suggest that active metabolites may contribute to the anticonvulsant activity of the N-alkylated VTDs and reactive intermediates may be formed during their metabolism. In mice, VTD had five to 10 times lower clearance (CL), and three times longer half-life than I-VTD and DM-VTD, making it a more attractive compound than DM-VTD and I-VTD for further development. VTD's extent of brain penetration was only half that observed for the N-alkylated taurinamides suggesting that it has a higher intrinsic activity that DM-VTD and I-VTD. 5 In conclusion, from this series of compounds, although VTD caused embryolethality, this compound emerged as the most promising new antiepileptic drug, having a preclinical spectrum characterized by the highest anticonvulsant potential, lowest potential for teratogenicity and favorable pharmacokinetics.


Assuntos
Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacocinética , Teratogênicos/toxicidade , Ácido Valproico/farmacocinética , Animais , Anticonvulsivantes/síntese química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Desenvolvimento Embrionário e Fetal/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Camundongos Mutantes , Estrutura Molecular , Convulsões/tratamento farmacológico , Teratogênicos/farmacocinética , Ácido Valproico/síntese química , Ácido Valproico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA