Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(11): 2871-2885, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36861355

RESUMO

Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas , Florestas , Folhas de Planta , Raízes de Plantas/microbiologia , Solo/química , Árvores/microbiologia
2.
Ecology ; 91(3): 693-707, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20426329

RESUMO

Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (A(N), plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRT(N)). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g N x m(-2) x yr(-1), 2 g P x m(-2) x yr(-1), or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic-minerotrophic gradient because plants and communities were adapted to maximize either A(N) or MRT(N), but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important in controlling overall plant community response to soil N availability than was NUE, and above- and belowground community N uptake efficiencies responded to nutrient addition in a similar manner. Our results demonstrate that plants respond to nutrient availability at multiple biological scales, and we suggest that N uptake efficiency may be a more representative measurement of plant responses to nutrient availability gradients than plant NUE.


Assuntos
Nitrogênio/química , Nitrogênio/metabolismo , Plantas/metabolismo , Áreas Alagadas , Biomassa , Fertilizantes , Michigan , Fósforo/metabolismo , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA