Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Med ; 45(6): 1721-1734, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32236566

RESUMO

Polyphenols are increasingly investigated for the treatment of periodontitis and research on their use in dental biomaterials is currently being conducted. Grape pomace extracts are a rich source of polyphenols. In the present study, the polyphenols of two different types of grape pomace were characterized and identified by high­performance liquid chromatography­diode array detector, and the effect of polyphenol­rich grape pomace extracts on mesenchymal stem cell (MSC) osteogenic differentiation was investigated. Solid­liquid extraction was used to recover polyphenols from red and white grape pomace. The two extracts have been characterized through the phenolic content and antioxidant power. Human MSCs (hMSCs) from the bone marrow were cultured both with and without given amounts (10 or 20 µg/ml) of the obtained pomace extracts. Their effects on cell differentiation were evaluated by reverse transcription­quantitative polymerase chain reaction, compared with relevant controls. Results showed that both pomace extracts, albeit different in phenolic composition and concentration, induced multiple effects on hMSC gene expression, such as a decreased receptor activator of nuclear factor κ­Β ligand/osteoprotegerin ratio and an enhanced expression of genes involved in osteoblast differentiation, thus suggesting a shift of hMSCs towards osteoblast differentiation. The obtained results provided data in favor of the exploitation of polyphenol properties from grape pomace extracts as complementary active molecules for dental materials and devices for bone regeneration in periodontal defects.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vitis/química , Antioxidantes/farmacologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Expressão Gênica/efeitos dos fármacos , Humanos , Fenóis/farmacologia , Proantocianidinas/farmacologia
2.
Acta Biomater ; 44: 97-109, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521494

RESUMO

UNLABELLED: The osseointegration of dental implants and their consequent long-term success is guaranteed by the presence, in the extraction site, of healthy and sufficient alveolar bone. Bone deficiencies may be the result of extraction traumas, periodontal disease and infection. In these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is obtained. This goal is achieved using bone graft materials, which should simulate extracellular matrix (ECM), in order to promote osteoblast proliferation and fill the void, maintaining the space without collapsing until the new bone is formed. In this work, we design, develop and characterize a novel, moldable chitosan-pectin hydrogel reinforced by biphasic calcium phosphate particles with size in the range of 100-300µm. The polysaccharide nature of the hydrogel mimics the ECM of natural bone, and the ceramic particles promote high osteoblast proliferation, assessed by Scanning Electron Microscopy analysis. Swelling properties allow significant adsorption of water solution (up to 200% of solution content) so that the bone defect space can be filled by the material in an in vivo scenario. The incorporation of ceramic particles makes the material stable at different pH and increases the compressive elastic modulus, toughness and ultimate tensile strength. Furthermore, cell studies with SAOS-2 human osteoblastic cell line show high cell proliferation and adhesion already after 72h, and the presence of ceramic particles increases the expression of alkaline phosphatase activity after 1week. These results suggest a great potential of the developed moldable biomaterials for the regeneration of the alveolar bone. STATEMENT OF SIGNIFICANCE: The positive fate of a surgical procedure involving the insertion of a titanium screw still depends on the quality and quantity of alveolar bone which is present in the extraction site. Available materials are basically hard scaffold materials with un-predictable behavior in different condition and difficult shaping properties. In this work we developed a novel pectin-chitosan hydrogel reinforced with ceramic particles. Polysaccharides simulate the extracellular matrix of natural bone and the extensive in vitro cells culture study allows to assess that the incorporation of the ceramic particles promote a pro-osteogenic response. Shape control, easy adaption of the extraction site, predictable behavior in different environment condition, swelling properties and an anti-inflammatory response are the significant characteristics of the developed biomaterial.


Assuntos
Processo Alveolar/fisiologia , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Cerâmica/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Processo Alveolar/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Força Compressiva , Humanos , Concentração de Íons de Hidrogênio , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pectinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Alicerces Teciduais/química , Água/química , Microtomografia por Raio-X
3.
Mater Sci Eng C Mater Biol Appl ; 68: 701-715, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524071

RESUMO

Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (<10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection.


Assuntos
Implantes Experimentais/microbiologia , Osteoblastos/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus epidermidis/crescimento & desenvolvimento , Alicerces Teciduais/química , Vancomicina/química , Animais , Fosfatos de Cálcio/química , Linhagem Celular , Quitosana/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Durapatita/química , Camundongos , Osteoblastos/metabolismo , Pectinas/química , Porosidade , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA