Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(5): 3217-3232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028967

RESUMO

Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.


Assuntos
Brassica napus , Brassica rapa , Vicia faba , Feminino , Bovinos , Animais , Metionina , Poaceae/metabolismo , Brassica napus/metabolismo , Vicia faba/metabolismo , Silagem/análise , Rúmen/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Lactação , Racemetionina/metabolismo , Racemetionina/farmacologia
2.
Animal ; 15(7): 100300, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34174593

RESUMO

There is increasing interest in using locally produced protein supplements in dairy cow feeding. The objective of this experiment was to compare rapeseed meal (RSM), faba beans (FBs) and blue lupin seeds (BL) at isonitrogenous amounts as supplements of grass silage and cereal based diets. A control diet (CON) without protein supplement was included in the experiment. Four lactating Nordic Red cows were used in a 4 × 4 Latin Square design with four 21 d periods. The milk production increased with protein supplementation but when expressed as energy corrected milk, the response disappeared due to substantially higher milk fat concentration with CON compared to protein supplemented diets. Milk protein output increased by 8.5, 4.4 and 2.7% when RSM, FB and BL were compared to CON. The main changes in rumen fermentation were the higher propionate and lower butyrate proportion of total rumen volatile fatty acids when the protein supplemented diets were compared to CON. Protein supplementation also clearly increased the ruminal ammonia N concentration. Protein supplementation improved diet organic matter and NDF digestibility but efficiency of microbial protein synthesis per kg organic matter truly digested was not affected. Flow of microbial N was greater when FB compared to BL was fed. All protein supplements decreased the efficiency of nitrogen use in milk production. The marginal efficiency (amount of additional feed protein captured in milk protein) was 0.110, 0.062 and 0.045 for RSM, FB and BL, respectively. The current study supports the evidence that RSM is a good protein supplement for dairy cows, and this effect was at least partly mediated by the lower rumen degradability of RSM protein compared to FB and BL. The relatively small production responses to protein supplementation with simultaneous decrease in nitrogen use efficiency in milk production suggest that economic and environmental consequences of protein feeding need to be carefully considered.


Assuntos
Brassica napus , Vicia faba , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Digestão , Feminino , Fermentação , Lactação , Nitrogênio/metabolismo , Poaceae , Rúmen/metabolismo , Silagem/análise
3.
J Dairy Sci ; 102(8): 7102-7117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155260

RESUMO

Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 ± 36.3 d in milk; mean ± SD) were used in a balanced, replicated 4 × 4 Latin square with 2 × 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM:DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.


Assuntos
Aminoácidos/metabolismo , Bovinos/fisiologia , Microalgas , Leite/metabolismo , Nitrogênio/metabolismo , Spirulina , Animais , Brassica rapa , Dieta/veterinária , Feminino , Lactação , Lactose/análise , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Silagem/análise , Vicia faba
4.
J Dairy Sci ; 100(1): 305-324, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865509

RESUMO

Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91d in milk) were used in replicated 4×4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5g/100g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45g/100g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8g/100g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.


Assuntos
Leite/metabolismo , Silagem , Animais , Bovinos , Dieta/veterinária , Ácidos Graxos/metabolismo , Feminino , Lactação/efeitos dos fármacos , Poaceae/metabolismo , Trifolium/metabolismo
5.
J Dairy Sci ; 89(5): 1678-87, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16606738

RESUMO

This study examined the effects of gradually replacing grass silage with whole-crop barley silage on feed intake, ruminal and total tract digestibility, and milk yield in lactating dairy cows. Four dairy cows in early lactation, equipped with rumen cannulas, were fed 4 diets over four 21-d periods. The diets consisted of 4 forage mixtures of grass silage and whole-crop barley silage supplemented with 8.9 kg/d of concentrates [dry matter (DM) basis]. The proportion of barley silage in the forage was adjusted to 0, 0.20, 0.40, and 0.60 kg/ kg of DM. Ruminal nutrient metabolism was measured on the basis of digesta flow entering the omasal canal. Ammonia concentrations and volatile fatty acid profiles were determined in the rumen fluid. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Replacement of grass silage with barley silage had no effect on DM, digestible organic matter, or neutral detergent fiber (NDF) intake, but starch intake increased, whereas nitrogen and digestible NDF (dNDF) intake decreased. Increases in the proportion of barley silage linearly decreased milk yield, and the molar proportion of acetate in the rumen, and increased that of propionate, butyrate, and valerate. Decreases in milk yield due to inclusion of barley silage were attributed to decreases in diet digestibility and nutrient supply to the animal. Barley silage linearly decreased organic matter digestibility in the total tract and NDF and dNDF digestibility in the rumen and the total tract, and decreased nonammonia N flow entering the omasal canal. No significant differences between diets were noted in the digestion rate of dNDF or passage rate of indigestible NDF from the rumen. Decreases in organic matter and NDF digestibility were attributed to the higher indigestible NDF concentration of barley silage compared with that of grass silage and to the smaller pool size of dNDF in the rumen.


Assuntos
Bovinos/fisiologia , Dieta , Hordeum , Poaceae , Silagem , Amônia/análise , Animais , Líquidos Corporais/química , Fibras na Dieta/metabolismo , Digestão , Ingestão de Alimentos , Ácidos Graxos Voláteis/análise , Feminino , Lactação , Rúmen/metabolismo
6.
J Anim Sci ; 80(7): 1986-98, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12162669

RESUMO

The objective of this experiment was to quantify ruminal digestive processes that could help to identify factors limiting DMI when silages differing in grass maturity were fed to dairy cows. Four silages were harvested at 1-wk intervals from a primary growth of a timothy-meadow fescue sward, resulting in feeds with digestible OM content in DM (D-value) of 739, 730, 707, and 639 g/kg in the order of succeeding harvest date. Four ruminally cannulated dairy cows were given ad libitum access to these silages supplemented with 7 kg concentrate per day in a 4 x 4 Latin square design. Rumen function was clearly affected by decreasing digestibility of silage fed. Passage rate of digestible NDF (DNDF) and indigestible NDF (INDF) increased, but it could not prevent the accumulation of DM, NDF, DNDF, and INDF into the rumen when silages of progressing grass maturity were fed. The greatest proportional increases in rumen pool were found in INDF and in medium particles (separated by wet sieving and measuring 315 to 2,500 microm). The passage of medium INDF particles decreased (P < 0.01) linearly (from 0.0365/h to 0.0281/h) with increasing maturity of grass ensiled, and it was slower than passage of small (80 to 315 microm) particles (on average 0.0524/h). Particle size reduction of large INDF particles to medium INDF particles was slower (P < 0.001) in the early cut silages (0.0216/h to 0.0484/h) but reduction of medium INDF particles to small INDF particles was faster (P < 0.001) in early cut silages (0.0436 to 0.0305). Passage of medium size particles and(or) rate of medium particle breakdown to small particles were potential intake-constraining properties of low digestibility forages, whereas large particle reduction to medium particles seemed not to be limiting. The increased feed intake of the early-cut silages was accompanied by decreased rumen fill, suggesting that rumen fill was not at least solely responsible for feed intake control.


Assuntos
Ração Animal , Bovinos/metabolismo , Digestão , Poaceae/crescimento & desenvolvimento , Rúmen/metabolismo , Animais , Ingestão de Alimentos , Feminino , Cinética , Tamanho da Partícula , Silagem
7.
Sairaanhoitaja ; 48(11): 577-8, 1972 Aug 10.
Artigo em Finlandês | MEDLINE | ID: mdl-4484322
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA