Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 2015, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222517

RESUMO

Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.


Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Vibrissas/inervação , Vibrissas/fisiologia
2.
Curr Opin Neurol ; 27(2): 142-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553463

RESUMO

PURPOSE OF REVIEW: Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. RECENT FINDINGS: Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. SUMMARY: These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.


Assuntos
Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Humanos , Neocórtex/citologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurogênese , Tálamo/citologia
4.
Eur J Neurosci ; 35(10): 1524-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22606998

RESUMO

Our current understanding of thalamocortical (TC) circuits is largely based on studies investigating so-called 'specific' thalamic nuclei, which receive and transmit sensory-triggered input to specific cortical target areas. TC neurons in these nuclei have a striking point-to-point topography and a stereotyped laminar pattern of termination in the cortex, which has made them ideal models to study the organization, plasticity, and development of TC circuits. However, despite their experimental importance, neurons within these nuclei only represent a fraction of all thalamic neurons and do not reflect the diversity of the TC neuron population. Here we review the distinct subtypes of projection neurons that populate the thalamus, both within and across anatomically-defined nuclei, with regard to differences in their morphology, input/output connectivity and target specificity, as well as more recent findings on their neuron type-specific gene expression and development. We argue that a detailed understanding of the biology of TC neurons is critical to understand the role of the thalamus in normal and pathological perception, voluntary movement, cognition and attention.


Assuntos
Córtex Cerebral/citologia , Vias Neurais/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Tálamo/citologia , Animais , Córtex Cerebral/fisiologia , Humanos , Vias Neurais/citologia , Tálamo/fisiologia
5.
Eur J Neurosci ; 35(10): 1533-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22606999

RESUMO

The topographical mapping of input is a fundamental organizing principle of sensory pathways. In the somatosensory system, a precise topographical representation of the face is first generated in the brainstem and then faithfully replicated in the thalamus and cortex. Although our knowledge of the distinct polysynaptic pathways that link cutaneous mechanoreceptors of the face with neocortical neurons has recently expanded, the molecular mechanisms controlling their neuron-type-specific assembly during development remain poorly understood. The increasing availability of genetic tools that enable manipulation of these developing circuits with cellular resolution now opens new perspectives in our understanding of the molecular mechanisms through which input from the periphery is converted into patterned central pathways.


Assuntos
Vias Aferentes/fisiologia , Mapeamento Encefálico , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Humanos , Modelos Neurológicos , Neurônios/classificação , Córtex Somatossensorial/citologia , Tálamo/citologia , Vibrissas/inervação
6.
Proc Natl Acad Sci U S A ; 107(8): 3576-81, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133588

RESUMO

Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise.


Assuntos
Fator I de Transcrição COUP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/citologia , Neurogênese/genética , Tratos Piramidais/citologia , Lobo Temporal/crescimento & desenvolvimento , Animais , Fator I de Transcrição COUP/genética , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Tratos Piramidais/metabolismo , Lobo Temporal/metabolismo , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo
7.
Neuron ; 57(2): 232-47, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18215621

RESUMO

The molecular mechanisms controlling the development of distinct subtypes of neocortical projection neurons, and CNS neuronal diversity more broadly, are only now emerging. We report that the transcription factor SOX5 controls the sequential generation of distinct corticofugal neuron subtypes by preventing premature emergence of normally later-born corticofugal neurons. SOX5 loss-of-function causes striking overlap of the identities of the three principal sequentially born corticofugal neuron subtypes: subplate neurons, corticothalamic neurons, and subcerebral projection neurons. In Sox5(-/-) cortex, subplate neurons aberrantly develop molecular hallmarks and connectivity of subcerebral projection neurons; corticothalamic neurons are imprecisely differentiated, while differentiation of subcerebral projection neurons is accelerated. Gain-of-function analysis reinforces the critical role of SOX5 in controlling the sequential generation of corticofugal neurons--SOX5 overexpression at late stages of corticogenesis causes re-emergence of neurons with corticofugal features. These data indicate that SOX5 controls the timing of critical fate decisions during corticofugal neuron production and thus subtype-specific differentiation and neocortical neuron diversity.


Assuntos
Córtex Cerebral/citologia , Proteínas de Ligação a DNA/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Tálamo/citologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Diferenciação Celular , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/deficiência , Eletroporação/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/citologia , Proteínas Nucleares/deficiência , Fatores de Transcrição SOXD , Estilbamidinas/metabolismo , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Proteínas Supressoras de Tumor/deficiência
8.
Neuroreport ; 16(8): 865-8, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15891586

RESUMO

Alloesthesia is a rare clinical condition that corresponds to a spatial disorder of stimulus localization, in which patients experience a given stimulus on the side opposite to the side of stimulation. Whereas it has been mostly described for unisensory stimulations, evidence of multisensory alloesthesia is only anecdotal. Here, we investigated a case of multisensory auditory-tactile alloesthesia. Our data suggest that auditory-tactile integration and multisensory alloesthesia not only depend on attentional mechanisms, but also on somatotopic preattentive mechanisms.


Assuntos
Atenção/fisiologia , Mascaramento Perceptivo/fisiologia , Transtornos de Sensação/fisiopatologia , Localização de Som/fisiologia , Percepção Espacial/fisiologia , Tato/fisiologia , Estimulação Acústica/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos de Sensação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA