Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Nutr ; 153(10): 3131-3143, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586605

RESUMO

BACKGROUND: Obesity is associated with increased intestinal permeability and a diminished immune response. Phosphatidylcholine (PC), a form of choline found in eggs, has been shown to beneficially modulate T-cell response in the context of obesity when provided as the sole form of choline in the diet. OBJECTIVE: This study aimed to determine the impact of varying doses of PC as part of a high-fat diet (HFD) on immune cell function and intestinal permeability. METHODS: Male Wistar rats 4 wk of age were randomly assigned to consume 1 of 6 diets for 12 wk containing the same amount of total choline but differing in the forms of choline: 1-control low-fat (CLF, 20% fat, 100% free choline [FC]); 2-control high-fat (CHF, 50% fat, 100% FC); 3-100% PC (100PC, 50% fat, 100% egg-PC); 4-75% PC (75PC, 50% fat, 75% egg-PC+25% FC); 5-50% PC (50PC, 50% fat, 50% egg-PC+50% FC); and 6-25% PC (25PC; 50% fat, 25% egg-PC+75% FC). Intestinal permeability was measured by fluorescein isothiocyanate-dextran. Immune function was assessed by ex vivo cytokine production of splenocytes and cells isolated from the mesenteric lymph node (MLN) after stimulation with different mitogens. RESULTS: Feeding the CHF diet increased intestinal permeability compared with the CLF diet, and doses of PC 50% or greater returned permeability to levels similar to that of the CLF diet. Feeding the CHF diet lowered splenocyte production of interleukin (IL)-1ß, IL-2, IL-10, and tumor necrosis factor-alpha, and MLN production of IL-2 compared with the CLF group. The 50PC diet most consistently significantly improved cytokine levels (IL-2, IL-10, tumor necrosis factor-alpha) compared with the CHF diet. CONCLUSIONS: Our results show that a dose of 50% of total choline derived from egg-PC can ameliorate HFD-induced intestinal permeability and immune cell dysfunction.


Assuntos
Dieta Hiperlipídica , Interleucina-10 , Ratos , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Fator de Necrose Tumoral alfa , Interleucina-2 , Citocinas , Colina/farmacologia , Obesidade , Lecitinas , Permeabilidade
2.
J Nutr ; 152(11): 2604-2614, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774126

RESUMO

BACKGROUND: In humans, the development of gut-associated lymphoid tissue (GALT) occurs in the first years of life and can be influenced by diet. OBJECTIVES: The objective of this study was to determine the effect of dietary choline on the development of gut-associated lymphoid tissue (GALT). METHODS: Three feeding trials were conducted in female Sprague-Dawley rats. Beginning 3 d before parturition (studies 1 and 3) or at day 10 of gestation (study 2), control dams consumed a 100% free choline (FC) diet until the end of the lactation period. In studies 1 and 3, test dams consumed a high-glycerophosphocholine (HGPC) diet [75% glycerophosphocholine (GPC), 12.5% phosphatidylcholine (PC), 12.5% FC] and a 100% PC diet, respectively (both 1 g of choline/kg diet). In study 2, test dams consumed a high-sphingomyelin (SM) and PC (SMPC) diet (34% SM, 37% PC, 17% GPC, 7% FC, 5% phosphocholine) or a 50% PC diet (50% PC, 25% FC, 25% GPC), both 1.7 g of choline/kg diet. Immune cell phenotypes and ex vivo cytokine production by mitogen-stimulated immune cells were measured. RESULTS: Feeding of the HGPC diet lowered T-cell IL-2 (44%), IFN-γ (34%), and TNF-α (55%) production in mesenteric lymph nodes (MLNs) compared with control. Feeding both SMPC and 50% PC diets during the lactation and weaning periods increased IL-2 (54%) and TNF-α (46%) production after T-cell stimulation compared with control. There was a lower production of IL-2 (46%), IL-6 (66%), and TNF-α (45%), and a higher production of IL-10 (44%) in both SMPC and 50% PC groups following ovalbumin stimulation compared with control in MLNs. Feeding a diet containing 100% PC increased the production of IFN-γ by 52% after T-cell stimulation compared with control. CONCLUSION: Feeding a diet containing a mixture of choline forms with a high content of lipid-soluble forms during both the lactation and weaning periods enhances ex vivo immune responses from the GALT in female Sprague-Dawley offspring.


Assuntos
Colina , Fator de Necrose Tumoral alfa , Animais , Feminino , Ratos , Colina/farmacologia , Dieta , Interleucina-2/farmacologia , Lactação , Lecitinas/farmacologia , Ratos Sprague-Dawley , Linfócitos T
3.
J Nutr Biochem ; 92: 108617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705949

RESUMO

Choline is an essential nutrient required for various biological processes. Eggs, dairy, and meat are rich in phosphatidylcholine (PC), whereas cereal and legumes are rich in free choline. Excess dietary choline leads to increase plasma trimethylamine N-oxide (TMAO). Epidemiological studies suggest that plasma TMAO is a biomarker for atherosclerosis and it has been suggested that a lower intake of eggs and meat would reduce choline consumption and thus reduce atherosclerosis development. To investigate whether the form of dietary choline influences atherosclerosis development in Ldlr-/-, we randomly fed Ldlr-/-male mice (aged 8 - 10 wk) one of the three 40% (calories) high fat diets (with 0.5% w/w of cholesterol): Control (0.1% w/w free-choline, CON), choline-supplemented (0.4% free-choline, CS), or PC-supplemented (0.1% free-choline and 0.3% choline from PC, PCS). After 12-wk of dietary intervention, the animals were euthanized and tissues and blood collected. Aortic atherosclerotic plaque area, plasma choline, lipid metabolites, and spleen and peripheral blood cell phenotypes were quantified. Surprisingly, the PCS group had significantly lower atherosclerotic lesions while having 2-fold higher plasma TMAO levels compared with both CON and CS groups (P<0.05). In the fasting state, we found that PCS decreased plasma very low-density lipoprotein-cholesterol (VLDL-C) and apolipoprotein B48 (APOB48), and increased plasma high-density lipoprotein-cholesterol (HDL-C). However, very low-density lipoprotein (VLDL) secretion was not affected by dietary treatment. We observed lower levels of circulating pro-atherogenic chemokines in the PCS group. Our study suggests that increased dietary PC intake does not induce a pro-atherogenic phenotype.


Assuntos
Aterosclerose/genética , Aterosclerose/terapia , Suplementos Nutricionais , Fosfatidilcolinas/uso terapêutico , Receptores de LDL/genética , Animais , Dieta Hiperlipídica , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Cell Mol Gastroenterol Hepatol ; 11(4): 999-1021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33238221

RESUMO

BACKGROUND & AIMS: Patients with ulcerative colitis have low concentrations of the major membrane lipid phosphatidylcholine (PC) in gastrointestinal mucus, suggesting that defects in colonic PC metabolism might be involved in the development of colitis. To determine the precise role that PC plays in colonic barrier function, we examined mice with intestinal epithelial cell (IEC)-specific deletion of the rate-limiting enzyme in the major pathway for PC synthesis: cytidine triphosphate:phosphocholine cytidylyltransferase-α (CTαIKO mice). METHODS: Colonic tissue of CTαIKO mice and control mice was analyzed by histology, immunofluorescence, electron microscopy, quantitative polymerase chain reaction, Western blot, and thin-layer chromatography. Histopathologic colitis scores were assigned by a pathologist blinded to the experimental groupings. Intestinal permeability was assessed by fluorescein isothiocyanate-dextran gavage and fecal microbial composition was analyzed by sequencing 16s ribosomal RNA amplicons. Subsets of CTαIKO mice and control mice were treated with dietary PC supplementation, antibiotics, or 4-phenylbutyrate. RESULTS: Inducible loss of CTα in the intestinal epithelium reduced colonic PC concentrations and resulted in rapid and spontaneous colitis with 100% penetrance in adult mice. Colitis development in CTαIKO mice was traced to a severe and unresolving endoplasmic reticulum stress response in IECs with altered membrane phospholipid composition. This endoplasmic reticulum stress response was linked to the necroptotic death of IECs, leading to excessive loss of goblet cells, formation of a thin mucus barrier, increased intestinal permeability, and infiltration of the epithelium by microbes. CONCLUSIONS: Maintaining the PC content of IEC membranes protects against colitis development in mice, showing a crucial role for IEC phospholipid equilibrium in colonic homeostasis. SRA accession number: PRJNA562603.


Assuntos
Colina-Fosfato Citidililtransferase/farmacologia , Colite/patologia , Estresse do Retículo Endoplasmático , Células Caliciformes/patologia , Mucosa Intestinal/patologia , Necroptose , Fosfatidilcolinas/metabolismo , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Microbioma Gastrointestinal , Homeostase , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade
5.
Br J Nutr ; 125(1): 50-61, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792032

RESUMO

Dietary choline, which is converted to phosphatidylcholine (PC) in intestinal enterocytes, may benefit inflammatory bowel disease patients who typically have reduced intestinal choline and PC. The present study investigated the effect of dietary choline supplementation on colitis severity and intestinal mucosal homoeostasis using a Citrobacter rodentium-induced colitis model. C57BL/6J mice were fed three isoenergetic diets differing in choline level: choline-deficient (CD), choline-sufficient (CS) and choline-excess (CE) for 3 weeks prior to infection with C. rodentium. The effect of dietary choline levels on the gut microbiota was also characterised in the absence of infection using 16S rRNA gene amplicon sequencing. At 7 d following infection, the levels of C. rodentium in CD mice were significantly greater than that in CS or CE groups (P < 0·05). CD mice exhibited greater damage to the surface epithelium and goblet cell loss than the CS or CE mice, which was consistent with elevated pro-inflammatory cytokine and chemokine levels in the colon. In addition, CD group exhibited decreased concentrations of PC in the colon after C. rodentium infection, although the decrease was not observed in the absence of challenge. Select genera, including Allobaculum and Turicibacter, were enriched in response to dietary choline deficiency; however, there was minimal impact on the total bacterial abundance or the overall structure of the gut microbiota. Our results suggest that insufficient dietary choline intake aggravates the severity of colitis and demonstrates an essential role of choline in maintaining intestinal homoeostasis.


Assuntos
Colina/farmacologia , Colite/dietoterapia , Dieta/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Quimiocinas/metabolismo , Citrobacter rodentium , Colite/etiologia , Colite/microbiologia , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/análise , Índice de Gravidade de Doença
6.
J Nutr ; 150(2): 249-255, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529091

RESUMO

BACKGROUND: Choline, an essential nutrient, is required for cell membranes, lipoprotein secretion, and methyl-group metabolism. Recently, it has been proposed that excess dietary choline consumption is metabolized to trimethylamine (TMA) by the gut microbiota; TMA is then oxidized to trimethylamine N-oxide (TMAO) in the liver. Epidemiological studies have clearly shown a positive correlation between plasma TMAO concentrations and cardiovascular events. Furthermore, some studies have shown an association between excess dietary choline, plasma TMAO concentrations, and atherosclerotic lesion size in apoE knockout (Apoe-/-) mice. OBJECTIVE: The aim of this study was to further investigate the relation between dietary choline and atherosclerosis in 2 atherogenic mouse models, the LDL receptor knockout (Ldlr-/-) and Apoe-/- mice. METHODS: Six feeding trials were performed in Ldlr-/- (40% high-fat diet) and Apoe-/- (unpurified diet) male mice, aged 8-10 wk. Mice randomly received control diet (0.1% choline), or choline- (1% choline), betaine- (0.1% choline and 0.9% betaine), or TMAO- (0.1% choline and 0.12% or 0.2% TMAO) supplemented diet for ≤28 wk. After the dietary intervention, the animals were killed and tissues and blood collected. Aortic atherosclerotic plaque area, plasma lipids, and choline metabolites were quantified. RESULTS: In Ldlr-/- mice, dietary supplementation for 8 wk with choline or TMAO increased plasma TMAO concentrations by 1.6- and 4-fold, respectively. After 16 wk, there was a 2-fold increase in plasma TMAO after dietary TMAO supplementation. In Apoe-/- mice, dietary supplementation with choline, betaine, or TMAO for 12 wk did not increase plasma TMAO concentrations. However, choline and TMAO supplementation for 28 wk significantly increased plasma TMAO concentrations by 1.8- and 1.5-fold, respectively. Contrary to predictions, atherosclerotic lesion size was not altered by any of the dietary interventions, irrespective of mouse model. CONCLUSIONS: In our study, high intakes of dietary choline or TMAO supplementation did not influence atherosclerosis development in Ldlr-/- or Apoe-/- male mice.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colina/administração & dosagem , Suplementos Nutricionais , Metilaminas/administração & dosagem , Receptores de LDL/genética , Animais , Aterosclerose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Hepatol Commun ; 3(2): 262-276, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766963

RESUMO

Phosphatidylethanolamine N-methyltransferase (PEMT) is a hepatic integral membrane protein localized to the endoplasmic reticulum (ER). PEMT catalyzes approximately 30% of hepatic phosphatidylcholine (PC) biosynthesis. Pemt-/- mice fed a high-fat diet (HFD) develop steatohepatitis. Interestingly, portions of the ER located close to the canaliculus are enriched in PEMT. Phospholipid balance and asymmetrical distribution by adenosine triphosphatase phospholipid transporting 8B1 (ATP8B1) on the canalicular membrane is required for membrane integrity and biliary processes. We hypothesized that PEMT is an important supplier of PC to the canaliculus and that PEMT activity is critical for the maintenance of canalicular membrane integrity and bile formation following HFD feeding when there is an increase in overall hepatic PC demand. Pemt+/+ and Pemt-/- mice were fed a chow diet, an HFD, or a choline-supplemented HFD. Plasma and hepatic indices of liver function and parameters of bile formation were determined. Pemt-/- mice developed cholestasis, i.e, elevated plasma bile acid (BA) concentrations and decreased biliary secretion rates of BAs and PC, during HFD feeding. The maximal BA secretory rate was reduced more than 70% in HFD-fed Pemt-/- mice. Hepatic ABCB11/bile salt export protein, responsible for BA secretion, was decreased in Pemt-/- mice and appeared to be retained intracellularly. Canalicular membranes of HFD-fed Pemt-/- mice contained fewer invaginations and displayed a smaller surface area than Pemt+/+ mice. Choline supplementation (CS) prevented and reversed the development of HFD-induced cholestasis. Conclusion: We propose that hepatic PC availability is critical for bile formation. Dietary CS might be a potential noninvasive therapy for a specific subset of patients with cholestasis.

8.
Biochim Biophys Acta Mol Basis Dis ; 1865(1): 14-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300671

RESUMO

Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt-/- mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt-/- mice. Treatment with vitamin E (0.5 g/kg) for 3 weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt-/- mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia , Ceramidase Ácida , Animais , Antioxidantes/farmacologia , Colesterol/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/metabolismo , Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Mensageiro , Vitamina E/administração & dosagem
9.
J Nutr ; 148(10): 1513-1520, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281112

RESUMO

Background: Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine to phosphatidylcholine. Pemt-/-/low density lipoprotein receptor (Ldlr)-/- mice have significantly reduced plasma lipids and are protected against atherosclerosis. Recent studies have shown that choline can be metabolized by the gut flora into trimethylamine-N-oxide (TMAO), which is an emerging risk factor for atherosclerosis. Objective: The objective of this study was to determine whether ectopic hepatic PEMT expression or choline supplementation would promote atherosclerosis in Pemt-/-/Ldlr-/- mice. Methods: Male 8- to 10-wk-old Pemt+/+/Ldlr-/- (SKO) and Pemt-/-/Ldlr-/- (DKO) mice were injected with an adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or human PEMT and fed a Western diet (40% of calories from fat, 0.5% cholesterol) for 8 wk. In a separate experiment, 8- to 10-wk-old SKO and half of the DKO male mice were fed a Western diet with normal (3 g/kg) choline for 12 wk. The remaining DKO mice [choline-supplemented (CS) DKO] were fed a CS Western diet (10 g choline/kg). Plasma lipid concentrations, choline metabolites, and aortic atherosclerosis were measured. Results: Plasma cholesterol, plasma TMAO, and aortic atherosclerosis were reduced by 60%, 40%, and 80%, respectively, in DKO mice compared with SKO mice. AAV-PEMT administration increased plasma cholesterol and TMAO by 30% and 40%, respectively, in DKO mice compared with AAV-GFP-treated DKO mice. Furthermore, AAV-PEMT-injected DKO mice developed atherosclerotic lesions similar to SKO mice. In the second study, there was no difference in atherosclerosis or plasma cholesterol between DKO and CS-DKO mice. However, plasma TMAO concentrations were increased 2.5-fold in CS-DKO mice compared with DKO mice. Conclusions: Reintroducing hepatic PEMT reversed the atheroprotective phenotype of DKO mice. Choline supplementation did not increase atherosclerosis or plasma cholesterol in DKO mice. Our data suggest that plasma TMAO does not induce atherosclerosis when plasma cholesterol is low. Furthermore, this is the first report to our knowledge that suggests that de novo choline synthesis alters TMAO status.


Assuntos
Aterosclerose/metabolismo , Colesterol/sangue , Colina/farmacologia , Fígado/metabolismo , Metilaminas/sangue , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Receptores de LDL/metabolismo , Animais , Aorta , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Colesterol na Dieta/administração & dosagem , Colina/metabolismo , Dieta Ocidental , Suplementos Nutricionais , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidiletanolamina N-Metiltransferase/farmacologia , Fosfatidiletanolaminas/metabolismo
10.
Nanoscale ; 10(22): 10629-10640, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29845181

RESUMO

Food protein and lipid based nanoparticles have attracted recent interest as a means of delivering nutraceuticals. Nanoparticle encapsulation of nutraceuticals faces challenges to overcome for it to be readily applied in the food industry, such as low encapsulation efficiency for hydrophilic compounds and poor stability once in the gastrointestinal tract. This research introduces a new protein-lipid composite nanoparticle with a three-layered structure (a barley protein layer, α-tocopherol layer and phospholipid layer) and an inner aqueous compartment to load hydrophilic nutraceuticals. This delivery system showed efficient encapsulation of vitamin B12 (69%) and controlled release behavior in simulated gastrointestinal media. An in vitro cell evaluation demonstrated that nanoparticles could internalize into Caco-2 cells via energy-dependent endocytosis and significantly increase the uptake and transport efficiency of vitamin B12 in this model. In vivo, the developed vitamin B12 loaded nanoparticle showed increased serum vitamin B12 levels upon oral administration and reduced the methylmalonic acid level more efficiently than the free form in rats. A 14-day in vivo toxicity study showed no evidence of toxicity in rats implying the safety of the developed nanoparticles in long term use. Overall, the results of this study show the great potential of the developed nanoparticles in increasing the absorption of vitamin B12 upon oral administration.


Assuntos
Suplementos Nutricionais , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Proteínas/química , Administração Oral , Animais , Células CACO-2 , Humanos , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Vitamina B 12/administração & dosagem
11.
J Nutr Biochem ; 50: 46-53, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29031242

RESUMO

Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD.


Assuntos
Creatina/uso terapêutico , Suplementos Nutricionais , Lipoproteínas/metabolismo , Lipotrópicos/uso terapêutico , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Triglicerídeos/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Ésteres do Colesterol/sangue , Ésteres do Colesterol/metabolismo , Creatina/efeitos adversos , Citocinas/sangue , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Repressão Enzimática , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Lipoproteínas/sangue , Lipotrópicos/efeitos adversos , Fígado/imunologia , Fígado/patologia , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão , Oxirredução , Distribuição Aleatória , Ratos Sprague-Dawley , Triglicerídeos/sangue , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
12.
J Lipid Res ; 56(9): 1701-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113536

RESUMO

Mice that lack phosphatidylethanolamine N-methyltransferase (Pemt(-/-) mice) are protected from high-fat (HF) diet-induced obesity. HF-fed Pemt(-/-) mice show higher oxygen consumption and heat production, indicating that more energy might be utilized for thermogenesis and might account for the resistance to diet-induced weight gain. To test this hypothesis, HF-fed Pemt(-/-) and Pemt(+/+) mice were challenged with acute cold exposure at 4°C. Unexpectedly, HF-fed Pemt(-/-) mice developed hypothermia within 3 h of cold exposure. In contrast, chow-fed Pemt(-/-) mice, possessing similar body mass, maintained body temperature. Lack of PEMT did not impair the capacity for thermogenesis in skeletal muscle or brown adipose tissue. Plasma catecholamines were not altered by Pemt genotype, and stimulation of lipolysis was intact in brown and white adipose tissue of Pemt(-/-) mice. HF-fed Pemt(-/-) mice also developed higher systolic blood pressure, accompanied by reduced cardiac output. Choline supplementation reversed the cold-induced hypothermia in HF-fed Pemt(-/-) mice with no effect on blood pressure. Plasma glucose levels were ∼50% lower in HF-fed Pemt(-/-) mice compared with Pemt(+/+) mice. Choline supplementation normalized plasma hypoglycemia and the expression of proteins involved in gluconeogenesis. We propose that cold-induced hypothermia in HF-fed Pemt(-/-) mice is linked to plasma hypoglycemia due to compromised hepatic glucose production.


Assuntos
Metabolismo Energético/genética , Hipotermia/genética , Obesidade/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Animais , Temperatura Baixa , Dieta Hiperlipídica , Glucose/metabolismo , Humanos , Hipotermia/metabolismo , Hipotermia/patologia , Lipólise/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/genética , Obesidade/patologia , Consumo de Oxigênio/genética
13.
J Nutr Biochem ; 26(10): 1077-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092371

RESUMO

Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC.


Assuntos
Deficiência de Colina/fisiopatologia , Mucosa Intestinal/metabolismo , Lactação/fisiologia , Metabolismo dos Lipídeos/fisiologia , Animais , Colina/administração & dosagem , Colina/fisiologia , Dieta , Esterificação , Ácidos Graxos/metabolismo , Feminino , Mucosa Intestinal/fisiopatologia , Jejuno/química , Lipídeos/análise , Lipídeos/sangue , Lipoproteínas/metabolismo , Período Pós-Prandial , Gravidez , Ratos , Ratos Sprague-Dawley , Redução de Peso
14.
Br J Nutr ; 113(11): 1723-31, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25902853

RESUMO

Choline demands during lactation are high; however, detailed knowledge is lacking regarding the optimal dietary intake during this critical period. The present study was designed to determine the effects of varying intakes of choline on maternal immune function during lactation. Primiparous Sprague-Dawley rats (n 42) were randomised 24-48 h before birth and fed the following diets for 21 d: choline-devoid (0 g choline/kg diet; D, n 10); 1·0 g choline/kg diet (C1, n 11); 2·5 g choline/kg diet (C2·5, n 10); 6·2 g choline/kg diet (C6, n 11). Splenocytes were isolated and stimulated ex vivo with concanavalin A, lipopolysaccharide (LPS) or CD3/CD28. D and C6 dams had lower final body weight, spleen weight and average pup weight than C1 dams (P< 0·05). There was a linear relationship between free choline concentration in pup stomach contents with maternal dietary choline content (P< 0·001, r² 0·415). Compared with C1 and C2·5, D spleens had a lower proportion of mature T cells and activated suppressor cells, and this resulted in reduced cytokine production after stimulation (P< 0·05). Feeding 6·2 g choline/kg diet resulted in a higher cytokine production after stimulation with CD3/CD28 (P< 0·05). Except for a higher IL-6 production after LPS stimulation with cells from the C2·5 dams (P< 0·05), there were no differences between the C1 and C2·5 dams. For the first time, we show that feeding lactating mothers a diet free of choline has substantial effects on their immune function and on offspring growth. Additionally, excess dietary choline had adverse effects on maternal and offspring body weight but only minimal effects on maternal immune function.


Assuntos
Colina/farmacologia , Dieta , Lactação , Fenômenos Fisiológicos da Nutrição Materna/imunologia , Animais , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Ingestão de Energia , Feminino , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
15.
Amino Acids ; 47(4): 839-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577261

RESUMO

The purpose of this study was to examine the effects of betaine supplementation on the regulation of one-carbon metabolism and liver lipid accumulation induced by a high-fat diet in rats. Rats were fed one of three different liquid diets: control diet, high-fat diet and high-fat diet supplemented with betaine. The control and high-fat liquid diets contained, respectively, 35 and 71 % of energy derived from fat. Betaine supplementation involved the addition of 1 % (g/L) to the diet. After three weeks on the high-fat diet the rats had increased total liver fat concentration, liver triglycerides, liver TBARS and plasma TNF-α. The high-fat diet decreased the hepatic S-adenosylmethionine concentration and the S-adenosylmethionine/S-adenosylhomocysteine ratio compared to the control as well as altering the expression of genes involved in one-carbon metabolism. Betaine supplementation substantially increased the hepatic S-adenosylmethionine concentration (~fourfold) and prevented fatty liver and hepatic injury induced by the high-fat diet. It was accompanied by the normalization of the gene expression of BHMT, GNMT and MGAT, which code for key enzymes of one-carbon metabolism related to liver fat accumulation. In conclusion, the regulation of the expression of MGAT by betaine supplementation provides an additional and novel mechanism by which betaine supplementation regulates lipid metabolism and prevents accumulation of fat in the liver.


Assuntos
Betaína/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Fígado Gorduroso/tratamento farmacológico , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Carbono/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
16.
Appl Physiol Nutr Metab ; 39(12): 1402-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25386981

RESUMO

Folic acid supplementation and food fortification policies have improved folate status in North American women of child bearing age. Recent studies have reported the possible inadequacy of vitamin B12 and B6 in the etiology of neural tube defects in folate-fortified populations. The aims of this study were to describe folate status and its relationship to supplementation and to assess vitamin B12 and B6 status in a cohort of pregnant women. Supplement intake data were collected in each trimester from the first cohort (n = 599) of the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Red blood cell folate (RBCF) and plasma folate, holotranscobalamin, and pyridoxal 5-phosphate were measured. Overt folate deficiency was rare (3%) but 24% of women in their first trimester had suboptimal RBCF concentration (<906 nmol·L(-1)). The proportion of the cohort in this category declined substantially in second (9%) and third (7%) trimesters. High RBCF (>1360 nmol·L(-1)) was observed in approximately half of the women during each pregnancy trimester. Vitamin B12 and B6 deficiencies were rare (<1% of the cohort). Women consuming folic acid supplements above the upper level had significantly higher RBCF and plasma folate concentrations. In conclusion, the prevalence of vitamin B12 and B6 deficiency was very low. A quarter of the women had suboptimal folate status in the first trimester of pregnancy and over half the women had abnormally high RBCF, suggesting that supplementation during pregnancy is not appropriate in a cohort of women considered to be healthy and a low risk for nutritional deficiencies.


Assuntos
Suplementos Nutricionais , Ácido Fólico/sangue , Vitamina B 12/sangue , Vitamina B 6/sangue , Complexo Vitamínico B/sangue , Adolescente , Adulto , Alberta , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Estado Nutricional , Gravidez , Resultado da Gravidez , Classe Social , Adulto Jovem
17.
J Nutr Biochem ; 25(7): 692-701, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24775093

RESUMO

Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats.


Assuntos
Gorduras na Dieta/farmacologia , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ácidos Oleicos/farmacologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Laticínios , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/farmacologia , Insulina/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Síndrome Metabólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/metabolismo , Ratos
18.
Biofactors ; 40(3): 277-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24353111

RESUMO

Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research.


Assuntos
Ácido Fólico/fisiologia , Metabolismo dos Lipídeos , Animais , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Obesidade/sangue , Obesidade/tratamento farmacológico
19.
J Nutr ; 144(3): 252-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24368431

RESUMO

Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development and improve liver function. Our data suggest that choline can promote liver health by maintaining cholesterol homeostasis.


Assuntos
Colesterol/metabolismo , Colina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Fosfatidiletanolamina N-Metiltransferase/sangue , Receptores de LDL/sangue , Triglicerídeos/metabolismo
20.
J Biol Chem ; 288(2): 837-47, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23179947

RESUMO

Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt(+/+)) and knock-out (Pemt(-/-)) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt(-/-) mice fed the HFHC diet, but not in their Pemt(-/-) littermates fed the HF diet. Plasma glucagon was elevated in Pemt(-/-) mice fed the HFHC diet compared with Pemt(-/-) mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt(-/-) mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt(-/-) mice through modulating plasma glucagon and its action in liver.


Assuntos
Colina/administração & dosagem , Glucagon/fisiologia , Resistência à Insulina , Fígado/efeitos dos fármacos , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Animais , Sequência de Bases , Colina/farmacologia , Primers do DNA , Gluconeogênese/efeitos dos fármacos , Teste de Tolerância a Glucose , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidiletanolamina N-Metiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA