Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 200, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326604

RESUMO

The plants of the genus Salacia L. are the storehouse of several bioactive compounds, and are involved in treating human diseases and disorders. Hitherto, a number of reports have been published on in vitro biotechnology as well as microbial involvement in the improvement of Salacia spp. The present review provides comprehensive insights into biotechnological interventions such as tissue culture for plant propagation, in vitro cultures, and endophytic microbes for up-scaling the secondary metabolites and biological potential of Salacia spp. Other biotechnological interventions such as molecular markers and bio-nanomaterials for up-grading the prospective of Salacia spp. are also considered. The in vitro biotechnology of Salacia spp. is largely focused on plant regeneration, callus culture, cell suspension culture, somatic embryogenesis, and subsequent ex vitro establishment of the in vitro-raised plantlets. The compiled information on tissue cultural strategies, involvement of endophytes, molecular markers, and nanomaterials will assist the advanced research related to in vitro manipulation, domestication, and commercial cultivation of elite clones of Salacia spp. Moreover, the genetic diversity and other molecular-marker based assessments will aid in designing conservation policies as well as support upgrading and breeding initiatives for Salacia spp. KEY POINTS: • Salacia spp. plays a multifaceted role in human health and disease management. • Critical and updated assessment of tissue culture, endophytic microbes, metabolites, molecular markers, and bio-nanomaterials of Salacia spp. • Key shortcomings and future research directions for Salacia biotechnology.


Assuntos
Salacia , Humanos , Biotecnologia , Plantas , Técnicas de Cultura de Células , Endófitos
2.
Plant Physiol Biochem ; 203: 108070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37816270

RESUMO

Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.


Assuntos
Sistemas CRISPR-Cas , Engenharia Metabólica , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta , Produtos Agrícolas/genética , Suplementos Nutricionais
3.
Curr Neuropharmacol ; 14(1): 72-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26813122

RESUMO

Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.


Assuntos
Pesquisa Biomédica/tendências , Técnicas de Cultura de Células/tendências , Avaliação Pré-Clínica de Medicamentos/tendências , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Preparações Farmacêuticas/administração & dosagem , Animais , Pesquisa Biomédica/métodos , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Microfluídica/métodos , Microfluídica/tendências
4.
Chem Biol Interact ; 245: 30-8, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26721197

RESUMO

Gymnema sylvestre, important Indian traditional herbal medicine has been used for diabetes from several years and marketed as single or multi-herb formulations globally. People are consuming G. sylvestre along with conventional hypoglycemic drugs. Therefore, there is need of evidence based assessment of risk versus benefits when G. sylvestre co-administered with conventional oral hypoglycemic drugs. In present investigation, pharmacodynamics and pharmacokinetic interactions with oral hypoglycemic drug, glimepiride (GLM) was studied in streptozotocin (STZ) induced diabetic rats. A specific and rapid HPLC-ESI-MS/MS method was established for simultaneous quantification of GLM and gymnemagenin (GMG) in rat plasma. Pharmacokinetic and pharmacodynamic interaction studies were carried out in STZ induced diabetic rats after concomitant administration of 400 mg/kg of G. sylvestre extract and 0.8 mg/kg of GLM for 28 days. The developed HPLC-ESI-MS/MS method was rapid, specific, and precise. Con-comitant oral administration of G. sylvestre extract (400 mg/kg) and GLM (0.8 mg/kg) in diabetic rats for 28 days showed beneficial pharmacodynamic interactions whereas no major alterations in the pharmacokinetics parameters of GLM and GMG were observed. This interaction demonstrated in animal model implies that significant clinical outcome might occur during concomitant administration of G. sylvestre extract and GLM especially in diabetic patients and warrants further studies in the same set up.


Assuntos
Alcaloides/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Gymnema sylvestre/química , Interações Ervas-Drogas , Hipoglicemiantes/sangue , Extratos Vegetais/sangue , Compostos de Sulfonilureia/sangue , Alcaloides/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/sangue , Hipoglicemiantes/farmacologia , Masculino , Extratos Vegetais/farmacologia , Ratos Wistar , Estreptozocina , Compostos de Sulfonilureia/farmacologia , Espectrometria de Massas em Tandem
5.
J Chromatogr A ; 983(1-2): 277-81, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12568391

RESUMO

A selective and very effective separation method for uranium(VI) has been developed by using poly(dibenzo-18-crown-6) and column chromatography. The separations are carried out from ascorbic acid medium. The adsorption of uranium(VI) was quantitative from 0.00002 to 0.006 M ascorbic acid. The elution of uranium(VI) was quantitative with 2.0-8.0 M HCl and 2.0-5.0 M H2SO4. The capacity of poly(dibenzo-18-crown-6) for uranium(VI) was found to be 0.92 +/- 0.01 mmol g(-1) of crown polymer. Uranium(VI) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of uranium in geological samples. It is possible to separate and determine 5 ppm of uranium(VI) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately +/- 2%).


Assuntos
Ácido Ascórbico/química , Éteres Cíclicos/química , Urânio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA