Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1193666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575931

RESUMO

Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought. The prime aimed of the study is to investigate the effect of melatonin on drought tolerance in soybean and its potential mechanisms. Soybean seedlings were treated with 20% polyethylene glycol 6000 (PEG 6000) and subjected to osmotic stress (14 days) with or without 100 µM melatonin treatment. Our results revealed that melatonin supplementation significantly mitigated PEG-induced growth retardation and increased water absorption ability. Foliar application of melatonin also increased gas exchange and the chlorophyll fluorescence attributes by the mitigation of the osmotic-induced reduction of the reaction activity of photosystems I and II, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), electron transport activity, and photosynthetic efficiency. In addition, PEG-induced elevated production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly reversed by melatonin treatment. Equally important, melatonin boosted the antioxidant activities of soybean plants. Moreover, osmotic stress substantially increased abscisic acid (ABA) accumulation in roots and leaves, while melatonin-received plant leaves accumulated less ABA but roots content higher ABA. Similarly, melatonin significantly suppressed ABA biosynthesis and signaling gene expression in soybean exposed to drought stress. Furthermore, osmotic stress significantly suppressed plasmalemma (GmPIPs) and tonoplast aquaporin (GmTIPs) genes expression, and their transcript abundance was up-regulated by melatonin co-addition. Taken together, our results indicated that melatonin potentially improves drought tolerance of soybean through the regulation of ABA and aquaporin gene expression, increasing photosynthetic efficiency as well as enhancing water uptake efficiency.

2.
Front Plant Sci ; 14: 1115782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063196

RESUMO

Pueraria thomsonii and Pueraria lobata are important medicinal plants with unique chemical compositions that are widely used in traditional Chinese medicine. To compare the nutritional and medicinal profiles of these two species, we analyzed the flavonoid, dietary fiber, total starch, and crude protein contents of one P. lobata and three P. thomsonii varieties using ultra-performance liquid chromatography-tandem mass spectrometry, enzyme weight, acid hydrolysis, and Kjeldahl methods. Furthermore, we used principal component analysis and hierarchical clustering heatmap analysis to separate the data obtained from the P. thomsonii and P. lobata samples. We detected 279 flavonoid compounds in the two Pueraria species, including 90 isoflavones and 78 flavonoids. A large proportion of isoflavones and flavonoids were more abundant in P. lobata than in P. thomsonii. The total starch content was significantly higher in P. thomsonii than in P. lobata. By contrast, the soluble dietary fiber, insoluble dietary fiber, and crude protein contents were substantially lower in P. thomsonii than in P. lobata. Taken together, our results demonstrate that P. lobata is better suited for use as a medicine, whereas P. thomsonii is better suited as an edible food, and provide a theoretical foundation for developing P. thomsonii and P. lobata germplasm resources.

3.
Environ Pollut ; 317: 120637, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400144

RESUMO

Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 µmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 µmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O2-•, H2O2 and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.


Assuntos
Arsênio , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Transcriptoma , Glycine max , Arsênio/metabolismo , Fatores de Transcrição/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Metais/metabolismo , Estresse Fisiológico/genética
4.
Antioxidants (Basel) ; 11(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35204192

RESUMO

Tomato is an important vegetable that is highly sensitive to drought (DR) stress which impairs the development of tomato seedlings. Recently, melatonin (ME) has emerged as a nontoxic, regulatory biomolecule that regulates plant growth and enhances the DR tolerance mechanism in plants. The present study was conducted to examine the defensive role of ME in photosynthesis, root architecture, and the antioxidant enzymes' activities of tomato seedlings subjected to DR stress. Our results indicated that DR stress strongly suppressed growth and biomass production, inhibited photosynthesis, negatively affected root morphology, and reduced photosynthetic pigments in tomato seedlings. Per contra, soluble sugars, proline, and ROS (reactive oxygen species) were suggested to be improved in seedlings under DR stress. Conversely, ME (100 µM) pretreatment improved the detrimental-effect of DR by restoring chlorophyll content, root architecture, gas exchange parameters and plant growth attributes compared with DR-group only. Moreover, ME supplementation also mitigated the antioxidant enzymes [APX (ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate reductase), GST (glutathione S-transferase), GR (glutathione reductase), MDHAR (monodehydroascorbate reductase), POD (peroxidase), and SOD (superoxide dismutase)], non-enzymatic antioxidant [AsA (ascorbate), DHA (dehydroascorbic acid), GSH (glutathione), and GSSG, (oxidized glutathione)] activities, reduced oxidative damage [EL (electrolyte leakage), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and O2•- (superoxide ion)] and osmoregulation (soluble sugars and proline) of tomato seedlings, by regulating gene expression for SOD, CAT, APX, GR, POD, GST, DHAR, and MDHAR. These findings determine that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress and thereby increasing the seedlings' adaptability to DR stress.

5.
Plant Physiol Biochem ; 167: 309-320, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392044

RESUMO

Photosynthesis is a fundamental biosynthetic process in plants that can enhance carbon absorption and increase crop productivity. Heat stress severely inhibits photosynthetic efficiency. Melatonin is a bio-stimulator capable of regulating diverse abiotic stress tolerances. However, the underlying mechanisms of melatonin-mediated photosynthesis in plants exposed to heat stress largely remain elucidated. Our results revealed that melatonin treatment (100 µM) in tomato seedlings increased the endogenous melatonin levels and photosynthetic pigment content along with upregulated of their biosynthesis gene expression under high-temperature stress (42 °C for 24 h), whereas heat stress significantly decreased the values of gas exchange parameters. Under heat stress, melatonin boosted CO2 assimilation, i.e., Vc,max (maximum rate of ribulose-1,5-bisphosphate carboxylase, Rubisco), and Jmax (electron transport of Rubisco generation) and also enhanced the Rubisco and FBPase activities, which resulted in upregulated photosynthetic related gene expression. In addition, heat stress greatly reduced the photochemical chemistry of photosystem II (PSII) and photosystem I (PSI), particularly the maximum quantum efficiency of PSII (Fv/Fm) and PSI (Pm). Conversely, melatonin supplementation increased the chlorophyll a fluorescence parameters led to amplifying the electron transport efficiency. Moreover, heat stress decreased the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while increasing nonphotochemical quenching (NPQ); however, melatonin reversed these values, which helps to fostering the dissipation of excess excitation energy. Taken together, our results provide a concrete insight into the efficacy of melatonin-mediated photosynthesis performance in a high-temperature regime.


Assuntos
Melatonina , Solanum lycopersicum , Clorofila , Clorofila A , Solanum lycopersicum/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA