Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356080

RESUMO

Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/efeitos da radiação , Flores/genética , Flores/metabolismo , Flores/efeitos da radiação , Genoma de Planta , Melhoramento Vegetal , Proteínas de Plantas/genética
2.
PLoS One ; 16(6): e0252832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086831

RESUMO

Agri-food systems are besieged by malnutrition, yield gaps, and climate vulnerability, but integrated, research-based responses in public policy, agricultural, value chains, and finance are constrained by short-termism and zero sum thinking. As they respond to current and emerging agri-food system challenges, decision makers need new tools that steer toward multi-sector, evidence-based collaboration. To support national agri-food system policy processes, the Integrated Agri-food System Initiative (IASI) methodology was developed and validated through case studies in Mexico and Colombia. This holistic, multi-sector methodology builds on diverse existing data resources and leverages situation analysis, modeled predictions, and scenarios to synchronize public and private action at the national level toward sustainable, equitable, and inclusive agri-food systems. Culminating in collectively agreed strategies and multi-partner tactical plans, the IASI methodology enabled a multi-level systems approach by mobilizing design thinking to foster mindset shifts and stakeholder consensus on sustainable and scalable innovations that respond to real-time dynamics in complex agri-food systems. To build capacity for these types of integrated, context-specific approaches, greater investment is needed in supportive international institutions that function as trusted in-region 'innovation brokers.' This paper calls for a structured global network to advance adaptation and evolution of essential tools like the IASI methodology in support of the One CGIAR mandate and in service of positive agri-food systems transformation.


Assuntos
Agricultura , Mudança Climática , Alimentos , Investimentos em Saúde , Política Pública
3.
BMC Genomics ; 21(1): 18, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906869

RESUMO

BACKGROUND: Potato virus Y (PVY) is a major pathogen of potatoes with major impact on global agricultural production. Resistance to PVY can be achieved by engineering potatoes to express a recessive, resistant allele of eukaryotic translation initiation factor eIF4E, a host dependency factor essential to PVY replication. Here we analyzed transcriptome changes in eIF4E over-expressing potatoes to shed light on the mechanism underpinning eIF4E-mediated recessive PVY resistance. RESULTS: As anticipated, modified eIF4E-expressing potatoes demonstrated a high level of resistance, eIF4E expression, and an unexpected suppression of the susceptible allele transcript, likely explaining the bulk of the potent antiviral phenotype. In resistant plants, we also detected marked upregulation of genes involved in cell stress responses. CONCLUSIONS: Our results reveal a previously unanticipated second layer of signaling attributable to eIF4E regulatory control, and potentially relevant to establishment of a broader, more systematic antiviral host defense.


Assuntos
Resistência à Doença/genética , Fator de Iniciação 4E em Eucariotos/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Alelos , Capsicum/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes Recessivos , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Potyvirus/genética , Potyvirus/fisiologia , Transdução de Sinais/genética , Solanum tuberosum/virologia
4.
Plant Biotechnol J ; 9(9): 1014-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21668622

RESUMO

Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.


Assuntos
Resistência à Doença , Fator de Iniciação 4E em Eucariotos/genética , Engenharia Genética , Doenças das Plantas/prevenção & controle , Potyvirus/patogenicidade , Solanum tuberosum/genética , Alelos , Sequência de Aminoácidos , Capsicum/genética , Capsicum/imunologia , Fator de Iniciação 4E em Eucariotos/imunologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Potyvirus/genética , Alinhamento de Sequência , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Transformação Genética
5.
Plant Physiol ; 150(4): 1806-21, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19553373

RESUMO

Capsaicinoids are the pungent alkaloids that give hot peppers (Capsicum spp.) their spiciness. While capsaicinoids are relatively simple molecules, much is unknown about their biosynthesis, which spans diverse metabolisms of essential amino acids, phenylpropanoids, benzenoids, and fatty acids. Pepper is not a model organism, but it has access to the resources developed in model plants through comparative approaches. To aid research in this system, we have implemented a comprehensive model of capsaicinoid biosynthesis and made it publicly available within the SolCyc database at the SOL Genomics Network (http://www.sgn.cornell.edu). As a preliminary test of this model, and to build its value as a resource, targeted transcripts were cloned as candidates for nearly all of the structural genes for capsaicinoid biosynthesis. In support of the role of these transcripts in capsaicinoid biosynthesis beyond correct spatial and temporal expression, their predicted subcellular localizations were compared against the biosynthetic model and experimentally determined compartmentalization in Arabidopsis (Arabidopsis thaliana). To enable their use in a positional candidate gene approach in the Solanaceae, these genes were genetically mapped in pepper. These data were integrated into the SOL Genomics Network, a clade-oriented database that incorporates community annotation of genes, enzymes, phenotypes, mutants, and genomic loci. Here, we describe the creation and integration of these resources as a holistic and dynamic model of the characteristic specialized metabolism of pepper.


Assuntos
Capsaicina/metabolismo , Biologia de Sistemas , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/metabolismo , Sequência de Bases , Benzeno/metabolismo , Capsaicina/análogos & derivados , Capsaicina/química , Capsicum/genética , Compartimento Celular , Mapeamento Cromossômico , Genes de Plantas , Modelos Biológicos , Fenóis/metabolismo
6.
Genetics ; 182(4): 1351-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474202

RESUMO

Comparative genomics provides a powerful tool for the identification of genes that encode traits shared between crop plants and model organisms. Pathogen resistance conferred by plant R genes of the nucleotide-binding-leucine-rich-repeat (NB-LRR) class is one such trait with great agricultural importance that occupies a critical position in understanding fundamental processes of pathogen detection and coevolution. The proposed rapid rearrangement of R genes in genome evolution would make comparative approaches tenuous. Here, we test the hypothesis that orthology is predictive of R-gene genomic location in the Solanaceae using the pepper R gene Bs2. Homologs of Bs2 were compared in terms of sequence and gene and protein architecture. Comparative mapping demonstrated that Bs2 shared macrosynteny with R genes that best fit criteria determined to be its orthologs. Analysis of the genomic sequence encompassing solanaceous R genes revealed the magnitude of transposon insertions and local duplications that resulted in the expansion of the Bs2 intron to 27 kb and the frequently detected duplications of the 5'-end of R genes. However, these duplications did not impact protein expression or function in transient assays. Taken together, our results support a conservation of synteny for NB-LRR genes and further show that their distribution in the genome has been consistent with global rearrangements.


Assuntos
Genoma de Planta/genética , Imunidade Inata/genética , Proteínas de Plantas/genética , Solanaceae/genética , Sintenia/genética , Capsicum/genética , Rearranjo Gênico , Genes de Plantas , Genômica/métodos , Doenças das Plantas/imunologia , Solanum tuberosum/genética
7.
Plant Biotechnol J ; 5(4): 526-36, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17511813

RESUMO

Despite long-standing plant breeding investments and early successes in genetic engineering, plant viral pathogens still cause major losses in agriculture worldwide.Early transgenic approaches involved the expression of pathogen-derived sequences that provided limited protection against relatively narrow ranges of viral pathotypes. In contrast,this study demonstrates that the ectopic expression of pvr1, a recessive gene from Capsicum chinense, results in dominant broad-spectrum potyvirus resistance in transgenic tomato plants (Solanum lycopersicum). The pvr1 locus in pepper encodes the eukaryotic translation initiation factor eIF4E. Naturally occurring point mutations at this locus result in monogenic recessive broad-spectrum potyvirus resistance that has been globally deployed via plant breeding programmes for more than 50 years. Transgenic tomato progenies that over-expressed the Capsicum pvr1 allele showed dominant resistance to several tobacco etch virus strains and other potyviruses, including pepper mottle virus, a range of protection similar to that observed in pepper homozygous for the pvr1 allele.


Assuntos
Resistência à Doença/genética , Fator de Iniciação 4E em Eucariotos/genética , Genes Recessivos , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Solanum/genética , Capsicum/genética , Capsicum/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potyvirus/patogenicidade , Solanum/imunologia , Solanum/metabolismo , Viroses/imunologia , Viroses/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA