Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinorg Chem Appl ; 2022: 6825150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308019

RESUMO

Nanoparticles show the multidisciplinary versatile utility and are gaining the prime place in various fields, such as medicine, electronics, pharmaceuticals, electrical designing, cosmetics, food industries, and agriculture, due to their small size and large surface to volume ratio. Biogenic or green synthesis methods are environmentally friendly, economically feasible, rapid, free of organic solvents, and reliable over conventional methods. Plant extracts are of incredible potential in the biosynthesis of metal nanoparticles owing to their bountiful availability, stabilizing, and reducing ability. In the present study, the aqueous leaf extract of Buchanania lanzan Spreng was mixed with 0.5 mM silver nitrate and incubated at 70°C for 1 h and synthesized a good quantity of AgNPs. The synthesized AgNPs were characterized using UV-visible spectroscopy, X-ray diffractometry (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The maximum absorption of UV-visible spectra was obtained in the range of 420-430 nm. Furthermore, SEM and TEM results inferred that the size of the particles were 23-62 nm, spherical, crystalline, uniformly distributed, and negatively charged with the zeta potential of -27.6 mV. In addition, the antifungal activities of the AgNPs were evaluated against two phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici in vitro using poison food techniques on PDA media. The maximum rate of mycelia inhibition was found in 150 ppm concentration of AgNPs against both phytopathogenic fungi.

2.
Adv Ther ; 39(6): 2365-2378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35072888

RESUMO

A novel, once-daily (o.d.), fixed-dose combination (FDC) of indacaterol acetate (IND), glycopyrronium bromide (GLY), and mometasone furoate (MF), delivered by the inhaler Breezhaler® device, is the first long-acting beta2-adrenergic agonist/long-acting muscarinic antagonist/inhaled corticosteroid (LABA/LAMA/ICS) therapy to be approved for maintenance treatment of asthma in adults inadequately controlled on LABA/ICS. The approval of IND/GLY/MF in the European Union (EU) also included an optional electronic sensor and smartphone (or other suitable device) application, making it the first "digital companion" that can be prescribed with an asthma medication. As a result, the European Medicines Agency included this approval as one of the "outstanding contributions to public health" (for Pneumology/Allergology) in their 2020 highlights report. Alongside IND/GLY/MF, an o.d. LABA/ICS FDC, IND/MF, was also developed and approved. This review outlines the unique strategy used in the accelerated development of IND/GLY/MF that combined various approaches: (1) selecting individual components with established efficacy/safety, (2) bridging doses to optimize efficacy/safety of IND/GLY/MF and IND/MF delivered via the Breezhaler® device, (3) developing IND/GLY/MF and IND/MF in parallel, and (4) submission for regulatory approval before formal completion of the pivotal phase III studies. IND/GLY/MF and IND/MF were combined in a single-development plan (PLATINUM program), which comprised four phase III studies: QUARTZ and PALLADIUM evaluated IND/MF while IRIDIUM and ARGON evaluated IND/GLY/MF. A unique feature was the inclusion of two LABA/ICS comparators in the pivotal IRIDIUM study-IND/MF as an internal comparator, and high-dose salmeterol xinafoate/fluticasone propionate (SAL/FLU) as a marketed comparator. In the ARGON study, IND/GLY/MF was compared against o.d. tiotropium (via Respimat®) plus twice-daily (b.i.d.) high-dose SAL/FLU (via Diskus®). As a result of this development strategy, the development and approval of IND/GLY/MF was accelerated by ca. 4 years as against what would be expected from a traditional approach, novel data were generated, and a unique optional digital companion was approved in the EU. A Video Abstract by Dr Dominic Brittain, Global Drug Development, Novartis. (MP4 228293 kb).


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Acetatos/uso terapêutico , Administração por Inalação , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Adulto , Argônio/uso terapêutico , Asma/tratamento farmacológico , Broncodilatadores/uso terapêutico , Combinação de Medicamentos , Desenvolvimento de Medicamentos , Glicopirrolato/uso terapêutico , Humanos , Indanos , Irídio/uso terapêutico , Furoato de Mometasona/uso terapêutico , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quinolonas
3.
IET Nanobiotechnol ; 11(5): 531-537, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28745285

RESUMO

In the recent decades, nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical, biological and optical properties of metals. In this study, silver nanoparticles (AgNPs) synthesis using aqueous leaf extracts of Tagetes patula L. which act as reducing agent as well as capping agent is reported. Synthesis of AgNPs was observed at different parameters like temperature, concentration of silver nitrate, leaf extract concentration and time of reduction. The AgNPs were characterized using UV-vis spectroscopy, scanning electron microscope with energy dispersive spectroscopy, transmission electron microscopy with selected area electron diffraction, X-ray diffraction, Fourier transform infrared and dynamic light scattering analysis. These analyses revealed the size of nanoparticles ranging from 15 to 30 nm as well revealed their spherical shape and cubic and hexagonal lattice structure. The lower zeta potential (-14.2mV) and the FTIR spectra indicate that the synthesized AgNPs are remarkably stable for a long period due to the capped biomolecules on the surface of nanoparticles. Furthermore, these AgNPs were found to be highly toxic against phytopathogenic fungi Colletotrichum chlorophyti by both in vitro and in vivo and might be a safer alternative to chemical fungicides.


Assuntos
Antifúngicos/farmacologia , Colletotrichum/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/farmacologia , Tagetes/química , Colletotrichum/patogenicidade , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA