Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 241: 120134, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262944

RESUMO

The expansion of algal bloom in surface waters is a global problem in the freshwater ecosystem. Differential reactivity of organic phosphorus (Po) compounds from organic debris, suspended particulate matter (SPM), and sediment towards hydrolysis can dictate the extent of supply often limited inorganic P (Pi) for algal growth, thereby controlling the extent of bloom. Here, we combined solution P-31 nuclear magnetic resonance (31P NMR), sequential extraction, enzymatic hydrolysis, and 16S rRNA measurements to characterize speciation and biogeochemical cycling of P in Lake Erhai, China. Lower ratios of diester-P/monoester-P in SPM in January (mean 0.09) and July (0.14) than that in April (0.29) reflected the higher degree of diester-P remineralization in cold and warm months. Both H2O-Pi and Po were significantly higher in SPM (mean 1580 mg ·kg-1 and 1618 mg ·kg-1) than those in sediment (mean 8 mg ·kg-1 and 387 mg ·kg-1). In addition, results from enzymatic hydrolysis experiments demonstrated that 61% Po in SPM and 58% in sediment in the H2O, NaHCO3, and NaOH extracts could be hydrolyzed. These results suggested that H2O-Pi and Po from SPM were the primarily bioavailable P sources for algae. Changes of Pi contents (particularly H2O-Pi) in algae and alkaline phosphatase activity (APA) during the observation periods were likely to be controlled by the strategies of P uptake and utilization of algae. P remobilization/remineralization from SPM likely resulted from algae and bacteria (e.g., Pseudomonas). Collectively, these results provide important insights that SPM P could sustain the algal blooms even if the dissolved P was depleted in the water column.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Ecossistema , Lagos/química , RNA Ribossômico 16S , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Eutrofização , Material Particulado
2.
J Environ Manage ; 320: 115906, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056497

RESUMO

Phosphorus (P) cycling by microbial activity is highly relevant in the eutrophication of lakes. In this context, the contents of organic (Po) and inorganic (Pi) phosphorus, the activity of acid (ACP) and alkaline (ALP) phosphomonoesterase (Pase), and the abundances of bacterial Pase genes (phoD, phoC, and phoX) were studied in sediments from Budi Lake, a eutrophic coastal brackish water lake in Chile. Our results showed spatiotemporal variations in P fractions, Pase activities, and Pase gene abundances. In general, our results showed higher contents of Pi (110-144 mg kg-1), Po (512-576 mg kg-1), and total P (647-721 mg kg-1) in sediments from the more anthropogenized sampling sites in summer compared with those values of Pi (86-127 mg kg-1), Po (363-491 mg kg-1) and total P (449-618 mg kg-1) in less anthropogenized sampling sites in winter. In concordance, sediments showed higher Pase activities (µg nitrophenyl phosphate g-1 h-1) in sediments from the more anthropogenized sampling sites (9.7-22.7 for ACP and 5.9 to 9.6 for ALP) compared with those observed in less anthropogenized sampling sites in winter (4.2-12.9 for ACP and 0.3 to 6.7 for ALP). Higher abundances (gene copy g-1 sediment) of phoC (8.5-19 × 108), phoD (9.2-47 × 106), and phoX (8.5-26 × 106) genes were also found in sediments from the more anthropogenized sampling sites in summer compared with those values of phoC (0.1-1.1 × 108), phoD (1.4-2.4 × 106) and phoX (0.7-1.2 × 106) genes in the less anthropogenized sites in winter. Our results also showed a positive correlation between P contents, Pase activities, and abundances of bacterial Pase genes, independent of seasonality. The present study provided information on the microbial activity involved in P cycling in sediments of Budi Lake, which may be used in further research as indicators for the monitoring of eutrophication of lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Chile , China , Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos , Monoéster Fosfórico Hidrolases , Fósforo/análise , Águas Salinas , Poluentes Químicos da Água/análise
3.
NanoImpact ; 28: 100422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041682

RESUMO

Potential use of hydroxyapatite nanoparticles (HANPs) [Ca10(PO4)6(OH)2] as slow P-release fertilizer (SRF) has recently attracted wider attention. However, commercially available HANP (with Ca/P ratio = 1.667) is the least soluble calcium phosphate and thus limits its full potential as an SRF in agronomic applications. In this research, we sought to enhance the dissolution rate of HANPs by enriching hydrogen phosphate (HPO42-) species in the phosphate (PO43-) structural sites. Seven different types of pure crystalline HANPs were synthesized at a range of Ca/P ratio from 1.46 (at pH 6.0) to 2.10 (at pH 12.0). Complementary results from FTIR and solid-state 31P MAS NMR spectroscopies showed that HPO42- species is most abundant in HANPs crystallized at pH 6.0 and gradually depleted at higher pH products. The rate of depletion of HPO42- species is proportional to the increase in carbonate incorporation into the HANP lattice, which preferentially forms B-type carbonated HANPs. The enhanced dissolution rate of HANPs due to hydrogen phosphate incorporation was tested using a flow-through macro-dialysis system that limits the partial transition of HANPs to other solid phases, which otherwise interfere with dissolution. The results show that the dissolution rate of HANPs increased with decreasing pH of synthesis and was highest in HANPs at pH 6.0. The dissolution rate differed by ten times between HANPs synthesized at pH 7.0 and 10.0. Overall, the atom-efficient synthetic route developed and the ability to tune the dissolution rate of HANPs are significant steps forward in improving the P-release efficiency of a potent SRF and is expected to contribute to efforts toward enhancing agricultural sustainability.


Assuntos
Apatitas , Fosfatos , Hidrogênio
4.
Sci Total Environ ; 792: 148353, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465044

RESUMO

Eutrophication in coastal water has compromised ecosystem services. Identification of phosphorus (P) sources and their load contributions are required for the development of effective nutrient management plans. In this research, multi-isotope proxies were applied to track P sources and evaluate their relative contributions in Love Creek, a coastal estuary in Delaware. The isotope values of carbon (ca. -22‰), nitrogen (ca.+6‰), and phosphate oxygen (ca.+18‰) of agricultural soils under different agricultural practices are generally similar even though their concentrations are distinctly different from forest soils (δ13C: ca. -27‰; δ13N: ca.+2‰; δ18OP: ca.+22‰). Comparison of these parameters among potential land sources (agricultural soils, forest soils, septic wastes, and plant debris) and sink (colloids in water) revealed that the plant debris and soils from forest sources are likely dominant sources of P in freshwater sites. The contribution of terrestrial P sources gradually decreased along the salinity gradient and agricultural soil sources gradually dominanted in the saline water portion of the creek. The variations of P loads due to weather-related discharge, changing land use and activities, and seasons were high and reflected the limitation of accurate estimation of sources. Overall, these results provide improved insights into potential sources and biogeochemical processes in the estuary, which are expected to be useful for water quality monitoring programs.


Assuntos
Estuários , Fósforo , Ecossistema , Monitoramento Ambiental , Isótopos de Nitrogênio/análise , Fósforo/análise , Salinidade
5.
PLoS One ; 16(8): e0255787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388208

RESUMO

Phytate is a dominant form of organic phosphorus (P) in the environment. Complexation and precipitation with polyvalent metal ions can stabilize phytate, thereby significantly hinder the hydrolysis by enzymes. Here, we studied the stability and hydrolyzability of environmentally relevant metal phytate complexes (Na, Ca, Mg, Cu, Zn, Al, Fe, Al/Fe, Mn, and Cd) under different pHs, presence of metal chelators, and thermal conditions. Our results show that the order of solubility of metal phytate complexes is as follows: i) for metal species: Na, Ca, Mg > Cu, Zn, Mn, Cd > Al, Fe, ii) under different pHs: pH 5.0 > pH 7.5), and iii) in the presence of chelators: EDTA> citric acid. Phytate-metal complexes are mostly resistant towards acid hydrolysis (except Al-phytate), and dry complexes are generally stable at high pressure and temperature under autoclave conditions (except Ca phytate). Inhibition of metal complex towards enzymatic hydrolysis by Aspergillus niger phytase was variable but found to be highest in Fe phytate complex. Strong chelating agents such as EDTA are insufficient for releasing metals from the complexes unless the reduction of metals (such as Fe) occurs first. The insights gained from this research are expected to contribute to the current understanding of the fate of phytate in the presence of various metals that are commonly present in agricultural soils.


Assuntos
Complexos de Coordenação/química , Metais/química , Ácido Fítico/química , Alumínio/química , Cádmio/química , Cobre/química , Íons/química , Ferro/química , Magnésio/química , Manganês/química , Fósforo/química , Potássio/química , Sódio/química , Zinco/química
6.
Water Res ; 163: 114840, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319360

RESUMO

Glyphosate, the most commonly used herbicide in the world, can be degraded into more toxic and persistent products such as aminomethylphosphonic acid (AMPA) or non-toxic products such as sarcosine and glycine. In this study, we used liquid chromatography mass spectrometry (LC-MS) and electrospray ionization (ESI) source Q Extractive Orbitrap mass spectrometry (ESI-Orbitrap MS) to identify glyphosate degradation products and combined with sequential extraction and stable isotopes to investigate the degradation of glyphosate and transformation of phosphorous (P) product in a soil-water system. The LC-MS and ESI-Orbitrap MS results showed that glycine formed during the early stage but was rapidly utilized by soil microorganisms. AMPA started to accumulate at the late stage and was found to be 3-6 times more resistant than glyphosate against degradation; while no sarcosine was formed. The 18O labeling and phosphate oxygen isotope results allowed a clear distinction of the fraction of inorganic P (Pi) derived from glyphosate, about half of which was then rapidly taken up and recycled by soil microorganisms. Our results provide the first evidence of the preferential utilization of glyphosate-derived Pi by microorganisms in the soil-water system. The rapid cycling of Pi derived from this disregarded source has important implications on nutrient management as well as water quality.


Assuntos
Herbicidas , Poluentes do Solo , Disponibilidade Biológica , Glicina/análogos & derivados , Fósforo , Solo , Tetrazóis , Água , Glifosato
7.
Environ Sci Technol ; 53(1): 69-76, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30501189

RESUMO

Understanding the sources of different phosphorus (P) pools and their bioavailability under imposed biogeochemical environments in a watershed is limited largely due to the lack of appropriate methods. In this research, phosphate oxygen isotope ratios and Bayesian modeling on fingerprinting elements were applied as two novel methods to identify sources and relative recalcitrancy of particulate P pools suspended in water in the continuum of sources from land to the mouth of a coastal estuary to the Chesapeake Bay. Comparative analyses of sizes, relative ratios, and oxygen isotope values of particulate P pools in the creek water suggested that the NaHCO3-P pool was bioavailable, whereas NaOH-P and HCl-P pools were recalcitrant during P transport along the creek. Agricultural field soil, streambank, and river bottom sediments were major sources of particulate P and their contributions varied significantly at the headwater and downstream regions of the creek. Bayesian modeling based on fingerprinting elements suggested that tides played a major role in forming particulate matter from estuarine sources at the creek mouth region and importing it upstream. These findings provide new insights into the origin and fate of particulate P and the fidelity of isotope and fingerprinting methods in source tracking of P in tidally influenced watersheds.


Assuntos
Material Particulado , Fósforo , Teorema de Bayes , Monitoramento Ambiental , Sedimentos Geológicos , Rios
8.
Water Res ; 126: 262-273, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961494

RESUMO

Abiotic and biotic reactions operate side by side in the cycling of phosphorus (P) in the environment, but the relative roles of these two reactions vary both spatially and temporally. In biotic reactions, the uptake and release of P are catalyzed by enzymes and thus change phosphate oxygen isotope ratios, while in abiotic reactions, the absence of hydrolysis-condensation reactions results in no apparent changes in isotope composition, except short-term kinetic isotope effect due solely to preferential ion exchange. Therefore, isotope method could be a promising tool to differentiate relative roles of these two reactions in the environment but the relationship of the dynamic concentration and isotope exchange at the biota-water interface is largely unknown. In this study, we aimed to develop a process-based isotope model underpinning the competition of abiotic (sorption, desorption, and ion exchange) and biotic (uptake, metabolism, and release) reactions during uptake and recycling of ferrihydrite-bound P by E. coli. Our model comprises equations describing the partitioning relationship among different P pools and their corresponding oxygen isotope compositions and is based exclusively on oxygen isotope exchange at multiple sites including mineral surface, aqueous phase, and bacterial cells. The process-based model adequately reproduced the measured concentration and isotope compositions over time. Furthermore, parametric and sensitivity analyses using the model indicated that the rate of biological uptake of P was the major factor controlling the changes of phosphate isotope composition. In conclusion, our model provides new insights into a mechanistic aspect of isotope exchange and could be potentially useful for future efforts to understand the interplay of biotic and abiotic factors on phosphorus cycling in natural environments.


Assuntos
Biota , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Minerais/química , Fósforo/metabolismo , Água/química , Adsorção , Transporte Biológico , Troca Iônica , Cinética , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/metabolismo , Fosfatos/análise , Fosfatos/metabolismo , Fósforo/análise , Reciclagem
9.
Environ Sci Technol ; 49(14): 8461-70, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26084013

RESUMO

Attributable to their nanoscale size and slow phosphorus (P) release kinetics, hydroxyapatite nanoparticles (HANPs) are increasingly advocated as a promising P nanofertilizer. Additionally, HANPs have been extensively used to remediate soils, groundwater, and nuclear wastewaters contaminated with metals and radionuclides. Increasing application of HANPs for agronomic and environmental advantages will expedite their dissemination in subsurface environments. Because the biogeochemical cycling of P is intimately coupled with iron, it is anticipated that HANPs and released P from HANPs interact with iron oxides, particularly naturally occurring goethite nanoparticles (GNPs) because of their nanoscale size and high reactivity toward P. Here, we investigated the cotransport and retention of HANPs and GNPs in water-saturated sand columns under environmentally relevant transport conditions (pH and natural organic matter type and concentration). Our results indicated that the "size-selective retention", i.e., preferential retention of larger particles near the column inlet and elution of smaller particles occurred during cotransport of HANPs and GNPs, and the cotransport of both NPs is highly sensitive to solution chemistry that determines NPs dissolution, homo- and heteroaggregation, and co- and competitive-retention. These findings have important insights into application of HANPs as a promising P nanofertilizer and an in situ amendment for contaminated site remediation.


Assuntos
Durapatita/química , Fertilizantes , Compostos de Ferro/química , Minerais/química , Nanopartículas/química , Compostos Férricos/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Fósforo/química , Porosidade , Dióxido de Silício , Solo
10.
Environ Sci Technol ; 49(10): 5887-96, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25633477

RESUMO

Chesapeake Bay, the largest and most productive estuary in the U.S., suffers from varying degrees of water quality issues fueled by both point and nonpoint nutrient sources. Restoration of the Bay is complicated by the multitude of nutrient sources, their variable inputs, and complex interaction between imported and regenerated nutrients. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics provides information useful in identifying the exchange of dissolved constituents across the sediment-water interface as well as helps to better constrain the mechanisms and processes controlling the coupling between sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ(18)O(P)) in concert with sediment chemistry, X-ray diffraction, and Mössbauer spectroscopy on sediments retrieved from an organic rich, sulfidic site in the mesohaline portion of the mid-Bay to identify sources and pathway of sedimentary P cycling and to infer potential feedbacks on bottom water hypoxia and surface water eutrophication. Authigenic phosphate isotope data suggest that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-Bay sediments. This indicates that the excess inorganic P generated by remineralization should have overwhelmed any pore water and/or bottom water because only a fraction of this precipitates as authigenic P. This is the first research that identifies the predominance of remineralization pathway and recycling of P within the Chesapeake Bay. Therefore, these results have significant implications on the current understanding of sediment P cycling and P exchange across the sediment-water interface in the Bay, particularly in terms of the sources and pathways of P that sustain hypoxia and may potentially support phytoplankton growth in the surface water.


Assuntos
Baías/química , Sedimentos Geológicos/química , Fósforo/química , Baías/análise , Eutrofização , Compostos Férricos/análise , Sedimentos Geológicos/análise , Oxigênio/análise , Fosfatos/análise , Fósforo/análise , Isótopos de Fósforo/análise , Espectroscopia de Mossbauer , Água/análise , Qualidade da Água , Difração de Raios X
11.
Environ Sci Technol ; 49(1): 203-11, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25469633

RESUMO

Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide improved insights into sediment P dynamics, particularly the rapid remineralization of organic P and the stability of Fe minerals and the ferric Fe-bound P pool in anoxic sediments in the Chesapeake Bay.


Assuntos
Sedimentos Geológicos/análise , Fósforo/análise , Baías , Fracionamento Químico/métodos , Compostos Férricos/análise , Compostos Férricos/química , Compostos Ferrosos/análise , Compostos Ferrosos/química , Sedimentos Geológicos/química , Ferro/análise , Ferro/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Mid-Atlantic Region , Minerais/química , Fosfatos/análise , Fosfatos/química , Fósforo/química , Isótopos de Fósforo , Silicatos/análise , Silicatos/química , Sulfetos/análise , Sulfetos/química , Espectroscopia por Absorção de Raios X/métodos
12.
Environ Sci Technol ; 45(15): 6254-61, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21732604

RESUMO

A key question to address in the development of oxygen isotope ratios in phosphate (δ(18)O(p)) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here, we present experimental results aimed at understanding the biotic and abiotic pathways of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of sedimentary phosphate phases by Escherichia coli and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction of phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 h) due to efficient O-isotope exchange (between O in PO(4) and O in water; that is, actual breaking and reforming of P-O bonds) (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate groups promoted the ion exchange (analogous to isotopic mixing) of intact phosphate ions (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli extracted loosely sorbed phosphate first, whereas M. aquaeolei preferred Fe-oxide-bound phosphate. The presence of bacteria always imprinted a biotic isotopic signature on the P phase that was taken up and cycled. For example, the δ(18)O(p) value of loosely sorbed phosphate shifted gradually toward equilibrium isotopic composition. The δ(18)O(p) value of Fe-oxide-bound phosphate, however, showed only slight changes initially but, when new Fe-oxides were formed, coprecipitated/occluded phosphate retained δ(18)O values of the aqueous phosphate at the time of formation of new Fe oxides. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of δ(18)O(p) as a tracer of phosphorus cycling in sediments, soils, and aquatic environments and as an indicator of paleo- environmental conditions.


Assuntos
Sedimentos Geológicos/química , Marcação por Isótopo/métodos , Minerais/química , Fosfatos/metabolismo , Fósforo/metabolismo , Adsorção , Biodegradação Ambiental , Escherichia coli/metabolismo , Compostos Férricos/química , Sedimentos Geológicos/microbiologia , Isótopos de Oxigênio , Reciclagem , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA