Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(3): 1131-1139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36358028

RESUMO

BACKGROUND: Bradysia procera, a ginseng stem fungus gnat, is one of the most serious insect pests of Korean ginseng (Panax ginseng), causing significant damage to plant growth. The goal of this study was to determine the toxicity and mechanism of action of phenylpropanoids (trans-anethole and estragole) isolated from the methanol extract and hydrodistillate of Illicium verum fruit against third-instar larvae and eggs of Bradysia procera. RESULTS: The filter-paper mortality bioassay revealed that estragole [median lethal concentration (LC50 ) = 4.68 g/cm2 ] has a significant fumigant effect, followed by trans-anethole (LC50 = 43.92 g/cm2 ). However, estragole had the lowest toxic effect when compared to commercially available insecticides. After 7 days, estragole and trans-anethole at 75 g/cm2 inhibited egg hatchability up to 97% and 93%, respectively. At 0.09 g/cm2 , insecticides had an inhibitory effect on egg-hatching ability ranging from 88% to 94%. Furthermore, in both closed and open containers, these active constituents were able to consistently induce vapor-phased toxicity. Both estragole and trans-anethole have the ability to inhibit acetylcholinesterase (AChE), which is involved in neurotransmitter function. However, the active constituent estragole from I. verum fruit acted as a potent AChE inhibitor and had a slightly lower effect on cyclic adenosine monophosphate (AMP) than octopamine alone. CONCLUSION: This finding suggests that estragole may influence Bradysia procera neurotransmitter function via both the AChE and octopaminergic receptors. More research is needed to demonstrate the potential applications of I. verum fruit-derived products as potential larvicides and ovicides for Bradysia procera population control. © 2022 Society of Chemical Industry.


Assuntos
Illicium , Inseticidas , Animais , Inseticidas/química , Illicium/química , Frutas/química , Acetilcolinesterase , Extratos Vegetais/farmacologia , Nematóceros
2.
Phytother Res ; 33(3): 584-590, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30506753

RESUMO

Acne is a chronic inflammatory disease of the skin that occurs when bacteria abnormally grow in hair follicles. The most common treatment is antibiotics, but they are limited due to antibiotic resistance. The purpose of this study was to identify the active ingredients of the antimicrobial effects of red ginseng (Panax ginseng C.A. Meyer), compare it to existing antibacterial substances, and determine its potential efficacy as a natural drug product. The hydrophobic fraction in red ginseng ethanol extract (RGEF) showed the same or better antimicrobial activity against Propionibacterium acnes than benzoyl peroxide or azelaic acid. In addition, the antimicrobial component derived from red ginseng selectively showed a high antimicrobial effect on P. acnes. Nuclear magnetic resonance spectroscopic analysis showed that the active antimicrobial substance in this fraction was panaxynol and panaxydol. Twenty subjects who had acne symptoms were treated with cream containing 3 mg/g of RGEF for 4 weeks. It was found that oxidized sebum contents and redness of the skin were reduced, and symptoms of the early to middle stage of acne were effectively improved. This study showed that red ginseng extract containing panaxynol and panaxydol can effectively control the symptoms of acne.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos/farmacologia , Panax/química , Extratos Vegetais/farmacologia , Adulto , Antibacterianos/isolamento & purificação , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cosméticos , Di-Inos/isolamento & purificação , Di-Inos/farmacologia , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Pele/efeitos dos fármacos , Creme para a Pele/química , Adulto Jovem
3.
Pestic Biochem Physiol ; 145: 29-38, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29482729

RESUMO

Bradysia procera is a serious insect pest of Panax ginseng plants. This study was conducted to determine the toxicity and mechanism of action of three phenylpropanoids, three terpenoids, and a ketone from Syzygium aromaticum bud methanol extract and hydrodistillate against third-instar larvae and eggs of B. procera. In a filter-paper mortality bioassay, methyl salicylate (LC50, 5.26µg/cm2) was the most toxic compound, followed by 2-nonanone, eugenol, and eugenyl acetate (8.77-15.40µg/cm2). These compounds were significantly less toxic than either thiamethoxam, clothianidin, or cypermethrin. Egg hatching was inhibited by 97, 85, and 40% at 11.7µg/cm2 of methyl salicylate, 2-nonanone, and eugenol, respectively. The egg-hatching inhibition of these insecticides was between 90 and 94% at 0.09µg/cm2. These constituents were consistently more toxic in closed versus open containers, indicating that toxicity was achieved mainly through the action of vapor. The mechanism of larvicidal action of methyl salicylate, eugenol, and eugenyl acetate might be primarily due to interference with the octopaminergic system. 2-Heptyl acetate and 2-nonanone might act on both acetylcholinesterase and the octopaminergic receptor. 2-Heptanone might act primarily on acetylcholinesterase. Further studies will warrant possible applications of S. aromaticum bud-derived products as potential larvicides and ovicides for the control of B. procera.


Assuntos
Dípteros/efeitos dos fármacos , Inseticidas/farmacologia , Cetonas/isolamento & purificação , Larva/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Fenilpropionatos/isolamento & purificação , Extratos Vegetais/farmacologia , Syzygium/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Animais , Dípteros/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/farmacologia , Óleos Voláteis/farmacologia , Fenilpropionatos/farmacologia , Receptores de Amina Biogênica/efeitos dos fármacos , Terpenos/isolamento & purificação , Terpenos/farmacologia
4.
J Ginseng Res ; 41(3): 361-369, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701878

RESUMO

BACKGROUND: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. METHODS: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. RESULTS: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. CONCLUSION: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

5.
Molecules ; 22(3)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294969

RESUMO

Ginsenosides are used as existing markers of red ginseng (RG) quality, and ginsenoside ratios are also indicative of the different components of red ginseng. For the analysis and classification of ginsenoside content, red ginseng was separated into three parts, namely, main roots, lateral roots, and fine roots, and each extract was subjected to ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QToF-MS) with multivariate statistical analysis. Principal component analysis (PCA) showed a clear discrimination between the extracts of main roots and fine roots and suggested discrimination markers (four for the main roots and five for the fine roots). The fine root markers were identified as ginsenoside. We identified two markers for the main roots of red ginseng in this study. Moreover, the contents of 22 ginsenosides were analyzed in all three components of red ginseng. Fine roots have the highest protopanaxadiol (PPD)/protopanaxatriol (PPT) ratio. The PPD group of ginsenosides, which is quantitatively dominant in fine roots, clearly distinguishes the main roots from the other parts.


Assuntos
Ginsenosídeos/análise , Metabolômica/métodos , Panax/química , Raízes de Plantas/química , Cromatografia Líquida de Alta Pressão/métodos , Análise de Componente Principal , Sapogeninas/análise , Espectrometria de Massas em Tandem/métodos
6.
Chem Pharm Bull (Tokyo) ; 64(9): 1298-303, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27383266

RESUMO

Panax ginseng C.A. MEYER is one of the most popular medicinal herbs in Asia and the chemical constituents are changed by processing methods such as steaming or sun drying. Metabolomic analysis was performed to distinguish age discrimination of four- and six-year-old red ginseng using ultra-performance liquid chromatography quadruple time of flight mass spectrometry (UPLC-QToF-MS) with multivariate statistical analysis. Principal component analysis (PCA) showed clear discrimination between extracts of red ginseng of different ages and suggest totally six discrimination markers (two for four-year-old and four for six-year-old red ginseng). Among these, one marker was isolated and the structure determined by NMR spectroscopic analysis was 13-cis-docosenamide (marker 6-1) from six-year-old red ginseng. This is the first report of a metabolomic study regarding the age differentiation of red ginseng using UPLC-QToF-MS and determination of the structure of the marker. These results will contribute to the quality control and standardization as well as provide a scientific basis for pharmacological research on red ginseng.


Assuntos
Metabolômica , Panax/química , Panax/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , República da Coreia , Fatores de Tempo
7.
Nat Prod Commun ; 7(6): 789-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22816309

RESUMO

The measurement of nitric oxide in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells is used as a model for evaluating the anti-inflammatory or chemopreventive potential of substances. Thienodolin, isolated from a Streptomyces sp. derived from Chilean marine sediment, inhibited nitric oxide production in LPS-stimulated RAW 264.7 cells (IC50 = 17.2 +/- 1.2 microM). At both the mRNA and protein levels, inducible nitric oxide synthase (iNOS) was suppressed in a dose-dependent manner. Mitogen-activated protein kinases (MAPKs), one major upstream signaling pathway involved in the transcription of iNOS, were not affected by treatment of thienodolin. However, the compound blocked the degradation of IkappaBa resulting in inhibition of NF-kappaB p65 nuclear translocation, and inhibited the phosphorylation of signal transducers and activators of transcription 1 (STAT1) at Tyr701. This study supports further exploration of thienodolin as a potential therapeutic agent with a unique mechanistic activity.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Eur J Neurosci ; 26(5): 1139-47, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767493

RESUMO

Sanshools are major active ingredients of Zanthoxylum piperitum and are used as food additives in East Asia. Sanshools cause irritant, tingling and sometimes paresthetic sensations on the tongue. However, the molecular mechanism underlying the pungent or tingling sensation induced by sanshools is not known. Because many transient receptor potential (TRP) channels are responsible for the sensations induced by various spices and food additives, we expressed 17 TRP channels in human embryonic kidney (HEK) cells and investigated their activation by hydroxy-alpha-sanshool (HalphaSS) or hydroxy-beta-sanshool (HbetaSS) isolated from Zanthoxylum piperitum. It was found that HalphaSS, but not HbetaSS, depolarized sensory neurons with concomitant firing of action potentials and evoked inward currents. Among 17 TRP channels expressed in HEK cells, HalphaSS caused Ca(2+) influx in cells transfected with TRPV1 or TRPA1, and evoked robust inward currents in cells transfected with TRPV1 or TRPA1. In primary cultured sensory neurons, HalphaSS induced inward currents and Ca(2+) influx in a capsazepine-dependent manner. Moreover, HalphaSS-induced currents and Ca(2+) influx were greatly diminished in TRPV1(-/-) mice. HalphaSS evoked licking behavior when injected into a single hind paw of wild-type mice, but this was much reduced in TRPV1-deficient mice. These results indicate that TRPV1 and TRPA1 are molecular targets of HalphaSS in sensory neurons. We conclude that the activations of TRPV1 and TRPA1 by HalphaSS explain its unique pungent, tingling sensation.


Assuntos
Amidas/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Amidas/análise , Análise de Variância , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/deficiência , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transfecção/métodos , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA