Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 274: 125944, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537347

RESUMO

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Proteínas Virais , MicroRNAs/análise , MicroRNAs/sangue , Humanos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Limite de Detecção , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , RNA Polimerases Dirigidas por DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA