Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Microbiol Biotechnol ; 33(2): 143-150, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36474318

RESUMO

Sarcopenia is a condition in which muscle mass, strength, and performance decrease with age. It is associated with chronic diseases such as diabetes, cardiovascular disease, and hypertension, and contributes to an increase in mortality. Because managing sarcopenia is critical for maintaining good health and quality of life for the elderly, the condition has sparked concern among many researchers. To counteract sarcopenia, intake of protein is an important factor, while a lack of either protein or vitamin D is a major cause of sarcopenia. In addition, essential amino acids, leucine, ß-hydroxy ß-methylbutyrate (HMB), creatine, and citrulline are used as supplements for muscle health and are suggested as alternatives for controlling sarcopenia. There are many studies on such proteins and supplements, but it is necessary to actually organize the types, amounts, and methods by which proteins and supplements should be consumed to inhibit sarcopenia. In this study, the efficacy of proteins and supplements for controlling sarcopenia according to human clinical studies is summarized to provide suggestions about how the elderly may consume proteins, amino acids, and other supplements.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Qualidade de Vida , Leucina , Suplementos Nutricionais
2.
BMC Complement Med Ther ; 22(1): 172, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752797

RESUMO

BACKGROUND: Globally, ischemic stroke is a major health threat to humans that causes lifelong disability and death. Mentha arvensis (MA) has been used in traditional medicine to alleviate oxidative stress and inflammation-related disorders. In the present study, the neuroprotective properties of fermented MA (FMA) extract were investigated in the gerbil and SH-SY5Y cells. model of transient global cerebral ischemia. METHODS: Bilateral common carotid artery occlusion-induced transient global cerebral ischemia in gerbil and hydrogen peroxide (H2O2)-mediated neurotoxic effects in human neuroblastoma cells (SH-SY5Y) were investigated. FMA (400 mg/kg) was orally administered for 7 days before induction of ischemic stroke. To evaluate the neuroprotective activity of FMA, we implemented various assays such as cell viability assay (MTT), lactate dehydrogenase (LDH) assay, histopathology, immunohistochemistry (IHC), histofluorescence, and western blot. RESULTS: FMA pretreatment effectively decreased transient ischemia (TI) induced neuronal cell death as well as activation of microglia and astrocytes in the hippocampal region. The protective effects of FMA extract against H2O2-induced cytotoxicity of SH-SY5Y cells were observed by MTT and LDH assay. However, FMA pretreatment significantly increased the expression of the antioxidant marker proteins such as superoxide dismutase-1 (SOD-1) and superoxide dismutase-2 (SOD-2) in the hippocampus and SH-SY5Y cells. Furthermore, the activation of mitogen-activated protein kinase (MAPK) further activated a cascade of outcomes such as neuroinflammation and apoptosis. FMA pretreatment notably decreased TI and H2O2 induced activation of MAPK (c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38) proteins in hippocampus and SH-SY5Y cells respectively. Besides, pretreatment with FMA markedly reduced H2O2 mediated Bax/Bcl2 expression in SH-SY5Y cells. CONCLUSION: Thus, these results demonstrated that neuroprotective activities of FMA might contribute to regulating the MAPK signaling pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Mentha , Neuroblastoma , Animais , Isquemia Encefálica/tratamento farmacológico , Linhagem Celular Tumoral , Regulação para Baixo , Gerbillinae/metabolismo , Humanos , Peróxido de Hidrogênio , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroproteção , Extratos Vegetais/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo
3.
Phytomedicine ; 91: 153658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332284

RESUMO

BACKGROUND: 2,6-Dimethoxy-1,4-benzoquinone (DMBQ), a natural phytochemical present in fermented wheat germ, has been reported to exert anti-cancer, anti-inflammatory, and anti-adipogenic effects. However, the effect of DMBQ on muscle hypertrophy and myoblast differentiation has not been elucidated. PURPOSE: We investigated the effect of DMBQ on skeletal muscle mass and muscle function and then determined the possible mechanism of DMBQ. METHODS: To examine myogenic differentiation and hypertrophy, confluent C2C12 cells were incubated in differentiation medium with or without various concentrations of DMBQ for 4 days. In animal experiments, C57BL/6 mice were fed DMBQ-containing AIN-93 diet for 7 weeks. Grip strength, treadmill, microscopic evaluation of muscle tissue, western blotting, and quantitative real-time PCR were performed. RESULTS: DMBQ significantly increased fusion index, myotube size, and the protein expression of myosin heavy chain (MHC). DMBQ increased the phosphorylation of protein kinase B (AKT) and p70 ribosomal protein S6 kinase (S6K), whereas the phosphorylation of these proteins was abolished by the phosphoinositide 3-kinase inhibitor LY294002 in C2C12 cells. In addition, DMBQ treatment increased peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), which programs mitochondrial biogenesis, protein levels compared with control C2C12 cells. DMBQ significantly increased maximal respiration and spare respiratory capacity in C2C12 cells. In animal experiments, DMBQ increased skeletal muscle weights and skeletal muscle fiber size compared with the control group values. In addition, the DMBQ group showed increased grip strength and running distance on an accelerating treadmill. The protein expression of total MHC, MHC1, MHC2A, and MHC2B in skeletal muscle was upregulated by DMBQ supplementation. We found that DMBQ increased the phosphorylation of AKT and mammalian target of rapamycin (mTOR), as well as downstream S6K and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in skeletal muscle. DMBQ also stimulated mRNA expression of PGC1α, accompanied by an increase in mitochondrial DNA content, oxidative phosphorylation (OXPHOS) proteins, and oxidative enzyme activity. CONCLUSION: Collectively, DMBQ was shown to increase skeletal muscle mass and performance by regulating the AKT/mTOR signaling pathway and enhancing mitochondrial function, which might be useful for the treatment and prevention of skeletal muscle atrophy.


Assuntos
Benzoquinonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Nutr Food Res ; 65(14): e2000652, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932312

RESUMO

SCOPE: γ-Oryzanol, a well-known antioxidant, has been used by body builders and athletes to boost strength and increase muscle gain, without major side effects. However, the effect of γ-Oryzanol on sarcopenia and the underlying molecular mechanism is poorly understood. RESULTS: Aged mice fed with the γ-Oryzanol diet do not show significant changes in muscle weight, but show increased running endurance as well as improved grip strength. The expression and activity of PPARδ and ERRγ are increased in skeletal muscle of γ-Oryzanol supplemented mice. γ-Oryzanol upregulates oxidative muscle fibers by MEF2 transcription factor, and PGC-1α and ERRα expressions. Fatty acid oxidation related genes and mitochondria biogenesis are upregulated by γ-Oryzanol. In addition, γ-Oryzanol inhibits TGF-ß-Smad-NADPH oxidase 4 pathway and inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and p65 NF-κB subunit, which cause skeletal muscle weakness. Collectively, γ-Oryzanol attenuates muscle weakness pathway and increases oxidative capacity by increasing PPARδ and ERRγ activity, which contributes to enhance strength and improve oxidative capacity in muscles, consequently enhancing exercise capacity in aged mice. Particularly, γ-Oryzanol directly binds to PPARδ. CONCLUSIONS: These are the first findings showing that γ-Oryzanol enhances skeletal muscle function in aged mice by regulating PPARδ and ERRγ activity without muscle gain.


Assuntos
Envelhecimento , PPAR delta/metabolismo , Fenilpropionatos/farmacologia , Condicionamento Físico Animal , Receptores de Estrogênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares , Força Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Biogênese de Organelas , Resistência Física , Receptor ERRalfa Relacionado ao Estrogênio
5.
Food Chem ; 353: 129463, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743428

RESUMO

Codium fragile (CF) is a type of green algae consumed as kimchi in Asia. UPLC-QTOF-MS/MS analysis showed that CF contain lysophosphatidyl choline, canthaxanthin, retinoic acid, α-tocopherol, and unsaturated fatty acids, which reportedly improve skeletal muscle health. However, the effect of CF on skeletal muscle mass and function remains to be elucidated. In mice fed with CF extracts, exercise endurance and muscle weight increased. CF extracts enhanced protein synthesis and myogenic differentiation through the mTORC1 pathway. CF extracts also promoted oxidative muscle fiber formation and mitochondrial biogenesis through the PGC-1α-related signaling pathway. Upregulation of PGC-1α by CF extracts was abolished by EX527 SIRT1 inhibitor treatment. Changed signaling molecules in the CF extracts were partially regulated by canthaxanthin, a new compound in CF extracts, suggesting that canthaxanthin contribute synergistically to the effect of CF extracts. Therefore, CF is a potential food source for sport nutrition or prevention of sarcopenia.


Assuntos
Clorófitas/química , Músculo Esquelético/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Cantaxantina/análise , Carbazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Extratos Vegetais/análise , Alga Marinha/química , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Regulação para Cima/efeitos dos fármacos
6.
J Ethnopharmacol ; 271: 113887, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1ß, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1ß and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Rutaceae/química , Quinase Syk/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Gastrite/patologia , Células HEK293 , Humanos , Ácido Clorídrico/toxicidade , Inflamação/genética , Interleucina-1beta/genética , Lipopolissacarídeos/toxicidade , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Phytomedicine ; 82: 153457, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444942

RESUMO

BACKGROUND: The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. PURPOSE: To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. METHODS: C57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. RESULTS: Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. CONCLUSION: WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.


Assuntos
Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Vitanolídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo , Withania/química , Vitanolídeos/farmacologia
8.
J Ethnopharmacol ; 268: 113602, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33246116

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY: In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS: To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS: The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION: Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Adjuvante de Freund/toxicidade , Lipopolissacarídeos/toxicidade , Olea , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Artrite Experimental/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Tunísia
9.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322712

RESUMO

Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1-9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleo de Semente do Linho/química , Antineoplásicos Fitogênicos/isolamento & purificação , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Polimerização/efeitos dos fármacos , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores
10.
Biomolecules ; 10(5)2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397672

RESUMO

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Etanol/química , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Rosaceae/química , Quinases da Família src/antagonistas & inibidores , Animais , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Gastrite/patologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Óxido Nítrico/biossíntese , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Quinases da Família src/metabolismo
11.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316567

RESUMO

As obesity promotes ectopic fat accumulation in skeletal muscle, resulting in impaired skeletal muscle and mitochondria function, it is associated with skeletal muscle loss and dysfunction. This study investigated whether Chrysanthemi zawadskii var. latilobum (CZH) protected mice against obesity-induced skeletal muscle atrophy and the underlying molecular mechanisms. High-fat diet (HFD)-induced obese mice were orally administered either distilled water, low-dose CZH (125 mg/kg), or high-dose CZH (250 mg/kg) for 8 w. CZH reduced obesity-induced increases in inflammatory cytokines levels and skeletal muscle atrophy, which is induced by expression of atrophic genes such as muscle RING-finger protein 1 and muscle atrophy F-box. CZH also improved muscle function according to treadmill running results and increased the muscle fiber size in skeletal muscle. Furthermore, CZH upregulated mRNA and protein levels of protein arginine methyltransferases (PRMT)1 and PRMT7, which subsequently attenuated mitochondrial dysfunction in the skeletal muscle of obese mice. We also observed that CZH significantly decreased PRMT6 mRNA and protein expression, which resulted in decreased muscle atrophy. These results suggest that CZH ameliorated obesity-induced skeletal muscle atrophy in mice via regulation of PRMTs in skeletal muscle.


Assuntos
Chrysanthemum/química , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Obesidade/complicações , Extratos Vegetais/administração & dosagem , Proteína-Arginina N-Metiltransferases/metabolismo , Administração Oral , Animais , Citocinas/metabolismo , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína-Arginina N-Metiltransferases/genética , Regulação para Cima/efeitos dos fármacos
12.
J Food Biochem ; 44(6): e13214, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32232876

RESUMO

Patrinia scabiosaefolia (PS) and Hippophae rhamnoides (HR) are traditionally used functional foods. Extracts from the root of PS are known for their anti-inflammatory effects, whereas those from the leaf of HR are effective at both preventing and treating obesity. This study investigated whether the extract combination of PS and HR (PHE) affected weight loss in obese mice. In vitro experiments demonstrated that PHE showed a synergistic effect on inhibiting adipocyte differentiation as compared with treatment with the single extracts. Additionally, PHE suppressed adipogenic-related genes in a concentration-dependent manner. In vivo PHE supplementation suppressed body weight gain, inhibited hepatic lipid accumulation, decreased adipose size, serum triglycerides, and improved insulin resistance in obese mice. These results suggest that a treatment strategy using a combination of plant-derived extracts might be effective at ameliorating obesity. PRACTICAL APPLICATIONS: Currently, common methods for reducing obesity are diet and exercise. These can stimulate oxidative phosphorylation and metabolic activation so have significantly effects. However, these are largely due to individual compliance; there is no significant effect of reducing the worldwide obesity rate. Recently, herbal extracts has been reported as alternative medicine about inflammatory and obesity because diet with the herbal extracts can improve obesity with minimal side effects. Of particular, a mixture of herbal products was investigated for the treatment of obesity. Our reports demonstrated the synergistic effects of natural products and emphasizes the need for studies investigating other combinations of herbal extracts in the treatment of obesity. The results of our studies highlight the synergistic effects of combination phytochemical extracts and their role in ameliorating obesity.


Assuntos
Hippophae , Patrinia , Animais , Fígado , Camundongos , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia
13.
FASEB J ; 34(6): 8068-8081, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293073

RESUMO

Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscle mass. C57BL/6 mice were fed a 0.25% U pinnatifida extract-containing diet for 8 weeks. U pinnatifida extract-fed mice showed increased running distance, total running time, and extensor digitorum longus and gastrocnemius muscle weights. U pinnatifida extract supplementation upregulated the expression of myocyte enhancer factor 2C, oxidative muscle fiber markers such as myosin heavy chain 1 (MHC1), and oxidative biomarkers in the gastrocnemius muscles. Compared to the controls, U pinnatifida extract-fed mice showed larger mitochondria and increased gene and protein expression of molecules involved in mitochondrial biogenesis and oxidative phosphorylation, including nuclear respiratory factor 2 and mitochondrial transcription factor A. U pinnatifida extract supplementation also increased the mRNA expression of angiogenesis markers, including VEGFa, VEGFb, FGF1, angiopoietin 1, and angiopoietin 2, in the gastrocnemius muscles. Importantly, U pinnatifida extracts upregulated the estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)/AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) networks, which are partially increased by fucoxanthin, hesperetin, and caffeic acid treatments. Collectively, U pinnatifida extracts enhance mitochondrial biogenesis, increase oxidative muscle fiber, and promote angiogenesis in skeletal muscles, resulting in improved exercise capacity and skeletal muscle mass. These effects are attributable to fucoxanthin, hesperetin, and caffeic acid, bioactive components of U pinnatifida extracts.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Resistência Física/efeitos dos fármacos , Extratos Vegetais/farmacologia , Undaria/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/tratamento farmacológico , Doenças Musculares/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo
14.
Nutrients ; 12(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046183

RESUMO

 Withania somnifera (WS), commonly known as ashwagandha, possesses diverse biological functions. WS root has mainly been used as an herbal medicine to treat anxiety and was recently reported to have an anti-obesity effect, however, the mechanisms underlying its action remain to be explored. We hypothesized that WS exerts its anti-obesity effect by enhancing energy expenditure through improving the mitochondrial function of brown/beige adipocytes and skeletal muscle. Male C57BL/6J mice were fed a high-fat diet (HFD) containing 0.25% or 0.5% WS 70% ethanol extract (WSE) for 10 weeks. WSE (0.5%) supplementation significantly suppressed the increases in body weight and serum lipids, and lipid accumulation in the liver and adipose tissue induced by HFD. WSE supplementation increased oxygen consumption and enhanced mitochondrial activity in brown fat and skeletal muscle in the HFD-fed mice. In addition, it promoted browning of subcutaneous fat by increasing mitochondrial uncoupling protein 1 (UCP1) expression. Withaferin A (WFA), a major compound of WS, enhanced the differentiation of pre-adipocytes into beige adipocytes and oxygen consumption in C2C12 murine myoblasts. These results suggest that WSE ameliorates diet-induced obesity by enhancing energy expenditure via promoting mitochondrial function in adipose tissue and skeletal muscle, and WFA is a key regulator in this function.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Fármacos Antiobesidade , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Withania/química , Vitanolídeos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Vitanolídeos/administração & dosagem , Vitanolídeos/isolamento & purificação
15.
Biomed Pharmacother ; 125: 109950, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32058217

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common risk factor for metabolic syndrome that increases the risk of future cardiovascular disease, stroke, and diabetes. Recently, autophagy has been proposed as a means to prevent NAFLD. We investigated whether substances with autophagy-inducing activity alleviate NAFLD. The Valeriana fauriei (V. fauriei) was selected as a potential autophagy inducer among various natural materials using a Cyto-ID autophagy detection kit. V. fauriei 70 % ethanol extract (VFE) increased LC3II levels in the presence of the lysosomal inhibitor and reduced the GFP/mCherry puncta ratio, suggesting that VFE enhanced autophagy. VFE reduced oleic acid (OA)-induced lipid accumulation and increased the number of autophagosome in hepatocytes. Autophagy induction by VFE is due to inhibition of mTORC1 activity. VFE supplementation reduced fatty liver by downregulating lipogenesis-related genes and increased the autophagy, as revealed by TEM and IHC analysis in the fatty liver. We identified iridoids as main compounds of VFE; didrovaltrate (DI), valeriotriate B (VAL B), valeriotetrate C (VAL C), valtrate (VAL), and valechlorine (VC) were shown to enhance autophagy. These compounds also reduced OA-induced lipid accumulation in an Atg5-dependent manner. Taken together, VFE and its iridoids might be effective in alleviating fatty liver by acting as autophagy enhancers to break down LDs.


Assuntos
Autofagia/efeitos dos fármacos , Iridoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Valeriana/química , Animais , Linhagem Celular Tumoral , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Iridoides/isolamento & purificação , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Extratos Vegetais/farmacologia
16.
Molecules ; 25(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079067

RESUMO

Red ginseng has been reported to elicit various therapeutic effects relevant to cancer, diabetes, neurodegenerative diseases, and inflammatory diseases. However, the effect of red ginseng on exercise endurance and skeletal muscle function remains unclear. Herein, we sought to investigate whether red ginseng could affect exercise endurance and examined its molecular mechanism. Mice were fed with red ginseng extract (RG) and undertook swimming exercises to determine the time to exhaustion. Animals fed with RG had significantly longer swimming endurance. RG treatment was also observed to enhance ATP production levels in myoblasts. RG increased mRNA expressions of mitochondrial biogenesis regulators, NRF-1, TFAM, and PGC-1α, which was accompanied by an elevation in mitochondrial DNA, suggesting an enhancement in mitochondrial energy-generating capacity. Importantly, RG treatment induced phosphorylation of p38 and AMPK and upregulated PGC1α expression in both myoblasts and in vivo muscle tissue. In addition, RG treatment also stimulated C2C12 myogenic differentiation. Our findings show that red ginseng improves exercise endurance, suggesting that it may have applications in supporting skeletal muscle function and exercise performance.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Panax/química , Resistência Física/efeitos dos fármacos , Extratos Vegetais/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Resistência Física/fisiologia , Extratos Vegetais/isolamento & purificação , Natação/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Med Food ; 22(10): 1047-1057, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31566516

RESUMO

Senile osteoporosis increases the risk of skeletal fractures with age. Cheonggukjang (CGJ), a traditional Korean dry fermented soybean product, has numerous therapeutic effects; however, its effects on bone mineral density (BMD) and bone metabolism in senile osteoporosis are unclear. In this study, we treated the senescence-accelerated mouse prone 6 (SAMP6) model of senile osteoporosis with CGJ to determine its potential for ameliorating and preventing osteoporosis progression. High-performance liquid chromatography analysis for isoflavone profiles revealed that short-term fermentation significantly increased the isoflavone aglycone content in soybeans. Thereafter, we fed 6-week-old SAMP6 mice with experimental diets containing 5% or 10% CGJ for 15 weeks. Microcomputed tomography revealed that CGJ supplementation effectively increased the BMD and relative bone length. In vitro, CGJ increased the osteopontin reactivity and upregulated the expression of Alp, Col1a1, Fak, Bmp2/4, Smad1/5/8, and Runx2 in osteoblasts, and decreased Cathepsin K reactivity and downregulated Rankl and Nfatc1 expression in osteoclasts. In addition, CGJ increased the osteoprotegerin/Rankl ratio. Collectively, these results demonstrate that CGJ can ameliorate the detrimental effects of senile osteoporosis by improving osteogenesis and decreasing osteoclast activity.


Assuntos
Densidade Óssea , Alimentos Fermentados , Glycine max/química , Osteogênese , Osteoporose/terapia , Animais , Isoflavonas/química , Masculino , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo
18.
Mol Nutr Food Res ; 63(17): e1801149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120170

RESUMO

SCOPE: Skeletal muscle mass and quality can be negatively affected by aging, inactivity, and disease, while a loss of muscle mass is associated with chronic disease status, falls, and mortality. We investigate the effects of Hydrangea serrata on skeletal muscle mass and function, along with the underlying mechanisms. METHODS AND RESULTS: H. serrata, identified through MyoD transcription activity screening, increases myogenic differentiation via Akt and p38. C57BL/6 mice are fed a 0.25% or 0.5% H. serrata diet for 8 weeks. H. serrata increased treadmill running distance and maximum speed, as well as skeletal muscle mass. H. serrata promotes the expression of myosin heavy chain 1 (MHC1) and MHC2A but not MHC2B. H. serrata also upregulates the protein expression of peroxisome proliferator-activated receptor δ (PPARδ) and mitochondrial complexes, and enhances citrate synthase and mitochondrial complex І activity. Transforming growth factor-ß (TGF-ß), myostatin, and growth differentiation factor 11 (GDF11) are attenuated by H. serrata, together with associated downstream signaling factors including phospho-Smad3 and NADPH oxidase 4 (NOX4). CONCLUSION: H. serrata enhances exercise endurance by upregulating PPARδ and downregulating TGF-ß, myostatin, and GDF11. H. serrata is a potential candidate for the development of functional food to maintain skeletal muscle mass and function.


Assuntos
Hydrangea , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Chás de Ervas , Animais , Diferenciação Celular , Linhagem Celular , Citrato (si)-Sintase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , PPAR delta/metabolismo , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Corrida
19.
J Food Sci ; 84(2): 349-357, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30726579

RESUMO

Osteopenia is a preclinical phase of osteoporosis, it occurs naturally with aging and increases the risk of bone fractures in elderly males. Previous studies have revealed the beneficial effects of soybean on preventing bone loss due to its isoflavone contents. Fermentation alters the soybean isoflavone contents, that is, isoflavone glucosides is hydrolyzed into aglycones. However, it is not clear how these alterations influences the preventive effect of soybean on bone loss. In this study, we fed senescence-accelerated mouse prone 6 (SAMP6), a model of senile osteopenia, with an equal dosage of nonfermented soybean (NS) or fermented soybean, Doenjang (DJ) for 18 weeks. Mice supplemented with DJ showed 1.13-fold higher bone densities and 1.06-fold longer relative bone lengths than those of osteopenic SAMP6 mice old control (OC), while NS-supplemented mice showed no significant improvement. Supplementation with DJ effectively prevented bone loss in the osteopenia model by the improvement of bone formation and reduction of osteoclastogenesis. In addition, we discovered that DJ increased osteogenesis in SAMP6 mice via BMP2-Smad-Runx2 signaling. These results suggest that the fermentation process could enhance bone loss prevention by soybean and dietary supplementation with fermented soybeans may be beneficial for bone health. PRACTICAL APPLICATION: Soybean fermentation improved the preventive effects of soybean on bone loss. Therefore, the consumption of fermented soybean, Doenjang, is a potential alternative for aging-related bone loss therapy.


Assuntos
Doenças Ósseas Metabólicas/dietoterapia , Glycine max/metabolismo , Osteoporose/tratamento farmacológico , Animais , Bacillus subtilis/metabolismo , Doenças Ósseas Metabólicas/metabolismo , Modelos Animais de Doenças , Feminino , Fermentação , Humanos , Isoflavonas/metabolismo , Masculino , Camundongos , Osteoporose/metabolismo , Glycine max/química , Glycine max/microbiologia
20.
FASEB J ; 33(3): 3252-3263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30376359

RESUMO

The consumption of soybeans is known to have beneficial effects on osteoporosis in postmenopausal women. However, the effects of soybean fermentation on the bioavailability and the antiosteoporotic effect have not yet been elucidated. To address this question, we fed ovariectomized C57BL/6J mice with a 5% nonfermented raw soybean (RS)- or fermented soybean (FS)-supplemented diet. After 18 wk of treatment, microcomputed tomography showed that FSs significantly increased bone mineral density compared with RSs. This was because of the up-regulation of bone morphogenic protein 2 (Bmp2) and its downstream target osteopontin in bone tissues. We analyzed isoflavone metabolite profiles in the sera of RS- or FS-fed mice and observed that the levels of 19 isoflavone metabolites were significantly increased in the sera of FS-fed mice. Among these metabolites, we observed that both dihydrodaidzein (DHD) and 6-hydroxydaidzein (6-HD) increased osteogenesis via Bmp2 signaling pathway in MC3T3-E1 cells and reduced receptor activator of nuclear factor κ-B ligand-induced osteoclastogenesis in RAW264.7 cells through the inhibition of NF-κB activation and MAPK phosphorylation. These data suggest that improved bioavailability of FSs resulted from the production of active metabolites such as DHD and 6-HD after consumption. DHD and 6-HD can be used as potential therapeutics for the amelioration of osteoporotic bone loss.-Kim, J.-S., Lee, H., Nirmala, F. S., Jung, C. H., Kim, M. J., Jang, Y.-J., Ha, T. Y., Ahn, J. Dihydrodaidzein and 6-hydroxydaidzein mediate the fermentation-induced increase of anti-osteoporotic effect of soybeans in ovariectomized mice.


Assuntos
Glycine max/metabolismo , Isoflavonas/metabolismo , Osteoporose/dietoterapia , Células 3T3 , Animais , Disponibilidade Biológica , Proteína Morfogenética Óssea 2/metabolismo , Modelos Animais de Doenças , Feminino , Fermentação , Alimentos Fermentados , Alimento Funcional , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Ovariectomia , Células RAW 264.7 , Transdução de Sinais , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA