Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762132

RESUMO

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, ß-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, ß-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, ß-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L-1 of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L-1 ß-glycerolphosphate, 75 µmol L-1 ascorbic acid and 10 nmol L-1 dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.


Assuntos
Calcinose , Cemento Dentário , Humanos , Cálcio , Glicerofosfatos , Osteogênese , Diálise Renal , Periodonto , Cálcio da Dieta , Ácido Ascórbico/farmacologia , Dexametasona/farmacologia
2.
Circ Res ; 132(8): 1084-1100, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053282

RESUMO

The identification of mediators for physiologic processes, correlation of molecular processes, or even pathophysiological processes within a single organ such as the kidney or heart has been extensively studied to answer specific research questions using organ-centered approaches in the past 50 years. However, it has become evident that these approaches do not adequately complement each other and display a distorted single-disease progression, lacking holistic multilevel/multidimensional correlations. Holistic approaches have become increasingly significant in understanding and uncovering high dimensional interactions and molecular overlaps between different organ systems in the pathophysiology of multimorbid and systemic diseases like cardiorenal syndrome because of pathological heart-kidney crosstalk. Holistic approaches to unraveling multimorbid diseases are based on the integration, merging, and correlation of extensive, heterogeneous, and multidimensional data from different data sources, both -omics and nonomics databases. These approaches aimed at generating viable and translatable disease models using mathematical, statistical, and computational tools, thereby creating first computational ecosystems. As part of these computational ecosystems, systems medicine solutions focus on the analysis of -omics data in single-organ diseases. However, the data-scientific requirements to address the complexity of multimodality and multimorbidity reach far beyond what is currently available and require multiphased and cross-sectional approaches. These approaches break down complexity into small and comprehensible challenges. Such holistic computational ecosystems encompass data, methods, processes, and interdisciplinary knowledge to manage the complexity of multiorgan crosstalk. Therefore, this review summarizes the current knowledge of kidney-heart crosstalk, along with methods and opportunities that arise from the novel application of computational ecosystems providing a holistic analysis on the example of kidney-heart crosstalk.


Assuntos
Síndrome Cardiorrenal , Ecossistema , Humanos , Estudos Transversais , Rim , Coração
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 901-924, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36826494

RESUMO

Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.


Assuntos
Doenças Cardiovasculares , Glomerulonefrite , Insuficiência Renal Crônica , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doença Crônica , Rim , Fatores de Risco , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações
4.
Redox Biol ; 56: 102459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099852

RESUMO

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Adenina , Animais , Anti-Inflamatórios , Apolipoproteínas E , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
5.
Toxins (Basel) ; 7(3): 719-27, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25734785

RESUMO

Survival among hemodialysis patients is disturbingly low, partly because vascular calcification (VC) and cardiovascular disease are highly prevalent. Elevated serum phosphorus (P) and calcium (Ca) levels play an essential role in the formation of VC events. The purpose of the current study was to reveal optical monitoring possibilities of serum P and Ca values during dialysis. Twenty-eight patients from Tallinn (Estonia) and Linköping (Sweden) were included in the study. The serum levels of Ca and P on the basis of optical information, i.e., absorbance and fluorescence of the spent dialysate (optical method) were assessed. Obtained levels were compared in means and SD. The mean serum level of Ca was 2.54 ± 0.21 and 2.53 ± 0.19 mmol/L; P levels varied between 1.08 ± 0.51 and 1.08 ± 0.48 mmol/L, measured in the laboratory and estimated by the optical method respectively. The levels achieved were not significantly different (p = 0.5). The Bland-Altman 95% limits of agreement between the two methods varied from -0.19 to 0.19 for Ca and from -0.37 to 0.37 in the case of P. In conclusion, optical monitoring of the spent dialysate for assessing the serum levels of Ca and P during dialysis seems to be feasible and could offer valuable and continuous information to medical staff.


Assuntos
Cálcio/sangue , Fósforo/sangue , Diálise Renal , Idoso , Biomarcadores/sangue , Soluções para Diálise/química , Feminino , Fluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Raios Ultravioleta
6.
PLoS One ; 10(1): e0116468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635832

RESUMO

Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.


Assuntos
Microambiente Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Uremia/patologia , Adulto , Proteína Morfogenética Óssea 2/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Cinacalcete/farmacologia , Colágeno Tipo I/metabolismo , Meios de Cultura , Feminino , Hemofiltração , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Solubilidade , Uremia/sangue
7.
Am J Nephrol ; 35(1): 31-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22179063

RESUMO

BACKGROUND: Arteriosclerosis and cardiovascular disease are strongly associated with vascular calcification. Hyperphosphatemia is an essential risk factor for increased vascular calcification. End-stage renal disease (ESRD) patients could serve as an in vivo model for accelerated calcification. This study focuses on the most likely protective effects of magnesium ion (Mg(2+)) on phosphate-induced vascular calcification ex vivo/in vitro. Furthermore, plasma Mg(2+) concentrations of ESRD and healthy controls were investigated for association with surrogate parameters of vascular calcification in vivo. METHODS: Aortic segments of male Wistar-Kyoto rats were incubated and the phosphate concentration of the medium was elevated. The aortic segments were incubated in the absence and presence of MgCl(2); tissue calcification was quantified by different methods. Serum Mg(2+) concentrations of patients with chronic kidney disease (CKD stage 5; ESRD) and patients without CKD (controls) were associated with carotid intima media thickness (IMT) and aortic pulse wave velocity (PWV) as surrogate parameter for arteriosclerosis and arterial stiffening. RESULTS: Incubation of aortic segments in the presence of ß-glycerophosphate and NaH(2)PO(4) caused an increased tissue Ca(2+) deposition compared to control conditions. This increased amount of Ca(2+) in the aortic rings was significantly decreased in the presence of Mg(2+). In CKD patients, but not in controls, magnesium serum concentration was associated with the IMT of the carotid arteries. In addition, CKD patients with higher magnesium serum concentration had a significantly lower PWV. DISCUSSION AND CONCLUSION: Elevated phosphate concentrations in the culture media induce ex vivo/in vitro medial calcification in intact rat aortic rings in the presence of alkaline phosphatase. Mg(2+) ions reduced ex vivo/in vitro vascular calcification despite increased phosphate concentration. This hypothesis is additionally based on the fact that CKD patients with high Mg(2) serum levels had significantly lower IMT and PWV values, which may result in a lower risk for cardiovascular events and mortality in these patients. Therefore, Mg(2+) supplementation may be an option for treatment and prevention of vascular calcification resulting in a reduction of cardiovascular events in CKD patients.


Assuntos
Biomarcadores/sangue , Magnésio/sangue , Calcificação Vascular/sangue , Animais , Aorta , Arteriosclerose/sangue , Pressão Sanguínea , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Magnésio/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos WKY , Fatores de Risco , Calcificação Vascular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA