Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 9(2): e00741, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682377

RESUMO

The kynurenine pathway (KP) is the main path for tryptophan metabolism, and it represents a multitude of potential sites for drug discovery in neuroscience, including pain, stroke, and epilepsy. L-kynurenine (LKYN), the first active metabolite in the pathway, emerges to be a prodrug targeting glutamate receptors. The safety, tolerability, pharmacokinetics, and pharmacodynamics of LKYN in humans have not been previously investigated. In an open-label, single ascending dose study, six participants received an intravenous infusion of 50, 100, and 150 µg/kg LKYN and new six participants received an intravenous infusion of 0.3, 0.5, 1, and 5 mg/kg LKYN. To compare the pharmacological effects between species, we investigated in vivo the vascular effects of LKYN in rats. In humans, LKYN was safe and well-tolerated at all dose levels examined. After infusion, LKYN plasma concentration increased significantly over time 3.23 ± 1.12 µg/mL (after 50 µg/kg), 4.04 ± 1.1 µg/mL (after 100 µg/kg), and 5.25 ± 1.01 µg/mL (after 150 µg/kg) (p ≤ 0.001). We observed no vascular changes after infusion compared with baseline. In rats, LKYN had no effect on HR and MAP and caused no dilation of dural and pial arteries. This first-in-human study of LKYN showed that LKYN was safe and well-tolerated after intravenous infusion up to 5 mg/kg over 20 minutes. The lack of change in LKYN metabolites in plasma suggests a relatively slow metabolism of LKYN and no or little feed-back effect of LKYN on its synthesis. The therapeutic potential of LKYN in stroke and epilepsy should be explored in future studies in humans.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Cinurenina/efeitos adversos , Pró-Fármacos/efeitos adversos , Adulto , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Epilepsia/tratamento farmacológico , Feminino , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Cinurenina/administração & dosagem , Cinurenina/farmacocinética , Masculino , Projetos Piloto , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Ratos , Acidente Vascular Cerebral/tratamento farmacológico , Adulto Jovem
2.
Eur J Pharmacol ; 553(1-3): 254-62, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17101127

RESUMO

ATP-sensitive potassium (K(ATP)) channels play an important role in the regulation of cerebral vascular tone. In vitro studies using synthetic K(ATP) channel openers suggest that the pharmacological profiles differ between rat basilar arteries and rat middle cerebral arteries. To address this issue, we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries. In contrast, abluminal application caused a concentration-dependent dilatation of both arteries, that was more potent in basilar than in middle cerebral arteries. Quantitative real-time PCR detected the presence of mRNA transcripts of the K(ATP) channel subunits Kir6.1, Kir6.2, SUR1 and SUR2B, while SUR2A mRNA was barely detected in both rat basilar and middle cerebral arteries. Of the five mRNAs, the expression levels of Kir6.1 and SUR2B transcripts were predominant in both rat basilar and middle cerebral arteries. Western blotting detected the presence of Kir6.1, Kir6.2, SUR1 and SUR2B proteins in both arteries. Densitometric measurements of the Western blot signals further showed higher expression levels of Kir6.1 and SUR2B proteins in rat middle cerebral arteries than was found in rat basilar arteries. In conclusion, our in vitro pharmacological studies showed no evidence for functional endothelial K(ATP) channels in either artery. Furthermore, the results indicate that Kir6.1/SUR2B is the major K(ATP) channel complex in rat basilar and middle cerebral arteries.


Assuntos
Artéria Basilar/química , Artéria Basilar/efeitos dos fármacos , Artéria Cerebral Média/química , Artéria Cerebral Média/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Angiografia , Animais , Western Blotting , Primers do DNA , DNA Complementar/biossíntese , Densitometria , Técnicas In Vitro , Canais KATP , Masculino , Microscopia de Fluorescência , Especificidade de Órgãos , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA