Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682720

RESUMO

Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n - 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n - 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Criança , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Longevidade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , PPAR alfa/metabolismo , Cofator PQQ/farmacologia , Gravidez
2.
FASEB J ; 31(4): 1434-1448, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007783

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.


Assuntos
Antioxidantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Cofator PQQ/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ceramidas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , PPAR gama/metabolismo , Cofator PQQ/administração & dosagem , Cofator PQQ/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/etiologia
3.
PLoS One ; 8(6): e67791, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825686

RESUMO

Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feto/metabolismo , Mães , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Feto/embriologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placenta/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA