Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(18): 4603-4614, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227457

RESUMO

Humans mainly ingest arsenic through contaminated drinking water, causing serious health effects. The World Health Organization (WHO) has set the permissible limit of arsenic in drinking water at 0.01 mg/L and concentrations should be regularly determined to ensure a safe supply. In this study, a leucomalachite green (LMG) pectin-based hydrogel reagent was prepared that selectively reacted with arsenic over other metals including manganese, copper, lead, iron, and cadmium. Pectin, optimized at 0.2% (w/v), was used to form the hydrogel matrix. Arsenic reacts with potassium iodate in sodium acetate buffer medium to liberate iodine that then oxidizes LMG entrapped in pectin hydrogel to form a blue product. Camera-based photometry/ImageJ software was used to monitor the color intensity, eliminating the need for a spectrophotometer. The intensity of gray in the red channel was chosen as optimal for the red, green, and blue (RGB) analysis. The colorimetric assay revealed a dynamic detection range toward arsenic solution standards of 0.003-1 mg/L, covering the WHO recommendation of below 0.01 mg/L arsenic in drinking water. The assay gave recovery rates between 97 and 109% at a 95% confidence interval, with precision of 4-9%. Concentrations of arsenic in the spiked drinking water, tap water, and pond water samples monitored by the developed method agreed well with conventional inductively coupled plasma optical emission spectrometry. This assay showed promise for on-site quantitative analysis of arsenic in water samples.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Humanos , Arsênio/análise , Água Potável/análise , Colorimetria/métodos , Indicadores e Reagentes , Hidrogéis , Pectinas , Espectrofotometria , Poluentes Químicos da Água/análise
2.
Talanta ; 242: 123305, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183979

RESUMO

Cadmium ion (Cd (II)) is a highly toxic heavy metal usually found in natural water. Exposure to Cd (II) can produce serious effects in human organs such as Itai-Itai disease. Therefore, the maximum allowance levels of Cd (II) in drinking water and herbal medicines imposed by the World Health Organization (WHO) are 3 µg L-1 and 300 µg kg-1, respectively. In this work, nitrogen-doped graphene quantum dots (N-GQDs) as a fluorescent sensor for Cd (II) determination was developed in both solution-based and paper-based systems. N-GQDs were synthesized from citric acid (CA) and ethylenediamine (EDA) via the hydrothermal method. The synthesized N-GQDs emitted intense blue fluorescence with a quantum yield (QY) of up to 80%. The functional groups on the surface of N-GQDs measured by FTIR were carboxyl (COO-), hydroxyl (OH-), and amine (NH2) groups, suggesting that they could be bound to Cd (II) for complexation. The fluorescence intensity of N-GQDs was gradually enhanced with the increase of Cd (II) concentration. This phenomenon was proved to result from the fluorescence enhancement (turn-on) based on the chelation enhanced fluorescence (CHEF) mechanism. Under the optimum conditions in the solution-based and paper-based systems, the limits of detection (LODs) were found to be 1.09 and 0.59 µg L-1, respectively. Furthermore, the developed sensors showed relatively high selectivity toward Cd (II) over ten other metal cations and six other anions of different charges. The performance of the sensor in real water and herbal medicine samples exhibited no significant difference as compared to the results of the validation method (ICP-OES). Therefore, the developed sensors can be used as fluorescent sensors for Cd (II) determination with high sensitivity, high selectivity, short incubation time (5 min). As such, the paper-based strategy has excellent promising potential for practical analysis of Cd (II) in water and herbal medicine samples with a trace level of Cd (II) concentrations.


Assuntos
Grafite , Pontos Quânticos , Cádmio , Fluorometria , Humanos , Nitrogênio
3.
Anal Methods ; 13(32): 3551-3560, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34292282

RESUMO

This work reports a facile synthesis of nitrogen-doped amorphous carbon nanodots (N-CNDs) and their use as a fluorometric paper-based sensor for the determination of Pb2+ at a low concentration. Both solution-based and paper-based systems were developed. The results show that the linearity ranges for Pb2+ determination were 0.010-10 mg L-1 (LOD = 0.008 mg L-1) and 0.005-0.075 mg L-1 (LOD = 0.004 mg L-1) for the solution-based and the paper-based sensors, respectively. Furthermore, the developed sensors show relatively high selectivity toward Pb2+ over ten other metal cations of different charges including As3+, Hg2+, Cd2+, Mg2+, Ni2+, Zn2+, Fe3+, Cu2+, Ba2+, and Ag+. The mechanism of Pb2+ determination was also investigated. It was found that the sensors exploited the quenching of the fluorescence intensity of N-CNDs by Pb2+via the photo-induced electron transfer (PET) mechanism. When applied to real water and herbal medicine samples, the performance of the sensor exhibited no significant difference as compared to the results of the validation method (ICP-OES). Overall, the developed sensors, especially the paper-based one, are promising for the practical analysis of Pb2+ in pharmaceutical and environmental samples with a low Pb2+ concentration.


Assuntos
Mercúrio , Nitrogênio , Carbono , Fluorometria , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA