RESUMO
Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-ß levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-ß and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.
Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Colina/farmacologia , Fator de Necrose Tumoral alfa , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Acetilcolina , Inflamação , Proteínas tau/metabolismoRESUMO
Most Americans (â¼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
RESUMO
Breast cancer (BC) is a common cause of morbidity and mortality, particularly in women. Moreover, the discovery of diagnostic biomarkers for early BC remains a challenging task. Previously, we [Jasbi et al. J. Chromatogr. B. 2019, 1105, 26-37] demonstrated a targeted metabolic profiling approach capable of identifying metabolite marker candidates that could enable highly sensitive and specific detection of BC. However, the coverage of this targeted method was limited and exhibited suboptimal classification of early BC (EBC). To expand the metabolome coverage and articulate a better panel of metabolites or mass spectral features for classification of EBC, we evaluated untargeted liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) data, both individually as well as in conjunction with previously published targeted LC-triple quadruple (QQQ)-MS data. Variable importance in projection scores were used to refine the biomarker panel, whereas orthogonal partial least squares-discriminant analysis was used to operationalize the enhanced biomarker panel for early diagnosis. In this approach, 33 altered metabolites/features were detected by LC-QTOF-MS from 124 BC patients and 86 healthy controls. For EBC diagnosis, significance testing and analysis of the area under receiver operating characteristic (AUROC) curve identified six metabolites/features [ethyl (R)-3-hydroxyhexanoate; caprylic acid; hypoxanthine; and m/z 358.0018, 354.0053, and 356.0037] with p < 0.05 and AUROC > 0.7. These metabolites informed the construction of EBC diagnostic models; evaluation of model performance for the prediction of EBC showed an AUROC = 0.938 (95% CI: 0.895-0.975), with sensitivity = 0.90 when specificity = 0.90. Using the combined untargeted and targeted data set, eight metabolic pathways of potential biological relevance were indicated to be significantly altered as a result of EBC. Metabolic pathway analysis showed fatty acid and aminoacyl-tRNA biosynthesis as well as inositol phosphate metabolism to be most impacted in response to the disease. The combination of untargeted and targeted metabolomics platforms has provided a highly predictive and accurate method for BC and EBC diagnosis from plasma samples. Furthermore, such a complementary approach yielded critical information regarding potential pathogenic mechanisms underlying EBC that, although critical to improved prognosis and enhanced survival, are understudied in the current literature. All mass spectrometry data and deidentified subject metadata analyzed in this study have been deposited to Mendeley Data and are publicly available (DOI: 10.17632/kcjg8ybk45.1).
Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Cromatografia Líquida , Detecção Precoce de Câncer , Feminino , Humanos , Metaboloma , MetabolômicaRESUMO
Vinegar ingestion at mealtime is gaining popularity for its antiglycemic effects; however, it is among the most acidic consumable substances. This study examined tooth wear in healthy adults participating in an 8-week randomized trial examining the effect of daily vinegar ingestion on insulin sensitivity and visceral fat reduction. Twice daily participants consumed a vinegar drink (two tablespoons vinegar in a cup of water; 3.6 g acetic acid) or a commercial vinegar pill (control, 0.045 g acetic acid) at mealtime. Participants were screened for dental erosion using the basic erosive wear examination (BEWE) by a blinded registered dental hygienist at trial baseline and week 8. Mean BEWE scores did not change in the control group but increased 18% in the vinegar group over the 8-week study (P = .038). Given the current popularity of vinegar as a medicinal agent, practitioners should caution patients who utilize this strategy on the possibility of erosive tooth wear. Trial registration: This trial was registered at ClinicalTrials.gov (NCT03577834) on July 5, 2018 and the institutional review board at Arizona State University provided ethical approval (STUDY00005418).