Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 66: 102874, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683300

RESUMO

OBJECTIVE: Enhancing energy turnover via uncoupled mitochondrial respiration in adipose tissue has great potential to improve human obesity and other metabolic complications. However, the amount of human brown adipose tissue and its uncoupling protein 1 (UCP1) is low in obese patients. Recently, a class of endogenous molecules, N-acyl amino acids (NAAs), was identified as mitochondrial uncouplers in murine adipocytes, presumably acting via the adenine nucleotide translocator (ANT). Given the translational potential, we investigated the bioenergetic effects of NAAs in human adipocytes, characterizing beneficial and adverse effects, dose ranges, amino acid derivatives and underlying mechanisms. METHOD: NAAs with neutral (phenylalanine, leucine, isoleucine) and polar (lysine) residues were synthetized and assessed in intact and permeabilized human adipocytes using plate-based respirometry. The Seahorse technology was applied to measure bioenergetic parameters, dose-dependency, interference with UCP1 and adenine nucleotide translocase (ANT) activity, as well as differences to the established chemical uncouplers niclosamide ethanolamine (NEN) and 2,4-dinitrophenol (DNP). RESULT: NAAs with neutral amino acid residues potently induce uncoupled respiration in human adipocytes in a dose-dependent manner, even in the presence of the UCP1-inhibitor guanosine diphosphate (GDP) and the ANT-inhibitor carboxyatractylate (CAT). However, neutral NAAs significantly reduce maximal oxidation rates, mitochondrial ATP-production, coupling efficiency and reduce adipocyte viability at concentrations above 25 µM. The in vitro therapeutic index (using induced proton leak and viability as determinants) of NAAs is lower than that of NEN and DNP. CONCLUSION: NAAs are potent mitochondrial uncouplers in human adipocytes, independent of UCP1 and ANT. However, previously unnoticed adverse effects harm adipocyte functionality, reduce the therapeutic index of NAAs in vitro and therefore question their suitability as anti-obesity agents without further chemical modifications.


Assuntos
Adipócitos , Aminoácidos , Humanos , Animais , Camundongos , Etanolamina , Tecido Adiposo Marrom , Metabolismo Energético
2.
Cell Metab ; 33(4): 833-844.e5, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33571454

RESUMO

Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.


Assuntos
Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/farmacologia , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Sistema Nervoso Central/metabolismo , Dieta Hiperlipídica , Polipeptídeo Inibidor Gástrico/química , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores dos Hormônios Gastrointestinais/genética
3.
Mol Metab ; 20: 28-37, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528280

RESUMO

BACKGROUND/OBJECTIVES: Although the prevalence of obesity and its associated metabolic disorders is increasing in both sexes, the clinical phenotype differs between men and women, highlighting the need for individual treatment options. Mitochondrial dysfunction in various tissues, including white adipose tissue (WAT), has been accepted as a key factor for obesity-associated comorbidities such as diabetes. Given higher expression of mitochondria-related genes in the WAT of women, we hypothesized that gender differences in the bioenergetic profile of white (pre-) adipocytes from obese (age- and BMI-matched) donors must exist. SUBJECTS/METHODS: Using Seahorse technology, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) of (pre-)adipocytes from male (n = 10) and female (n = 10) deeply-phenotyped obese donors under hypo-, normo- and hyperglycemic (0, 5 and 25 mM glucose) and insulin-stimulated conditions. Additionally, expression levels (mRNA/protein) of mitochondria-related genes (e.g. UQCRC2) and glycolytic enzymes (e.g. PKM2) were determined. RESULTS: Dissecting cellular OCR and ECAR into different functional modules revealed that preadipocytes from female donors show significantly higher mitochondrial to glycolytic activity (higher OCR/ECAR ratio, p = 0.036), which is supported by a higher ratio of UQCRC2 to PKM2 mRNA levels (p = 0.021). However, no major gender differences are detectable in in vitro differentiated adipocytes (e.g. OCR/ECAR, p = 0.248). Importantly, glucose and insulin suppress mitochondrial activity (i.e. ATP-linked respiration) significantly only in preadipocytes of female donors, reflecting their trends towards higher insulin sensitivity. CONCLUSIONS: Collectively, we show that preadipocytes, but not in vitro differentiated adipocytes, represent a model system to reveal gender differences with clinical importance for metabolic disease status. In particular preadipocytes of females maintain enhanced mitochondrial flexibility, as demonstrated by pronounced responses of ATP-linked respiration to glucose.


Assuntos
Adipócitos Brancos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Adulto , Proteínas de Transporte/metabolismo , Células Cultivadas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Consumo de Oxigênio , Fatores Sexuais , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
4.
Diabetes ; 67(11): 2456-2465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158241

RESUMO

Celastrol, a plant-derived constituent of traditional Chinese medicine, has been proposed to offer significant potential as an antiobesity drug. However, the molecular mechanism for this activity is unknown. We show that the weight-lowering effects of celastrol are driven by decreased food consumption. Although young Lep ob mice respond with a decrease in food intake and body weight, adult Lep db and Lep ob mice are unresponsive to celastrol, suggesting that functional leptin signaling in adult mice is required to elicit celastrol's catabolic actions. Protein tyrosine phosphatase 1 (PTP1B), a leptin negative-feedback regulator, has been previously reported to be one of celastrol's targets. However, we found that global PTP1B knockout (KO) and wild-type (WT) mice have comparable weight loss and hypophagia when treated with celastrol. Increased levels of uncoupling protein 1 (UCP1) in subcutaneous white and brown adipose tissue suggest celastrol-induced thermogenesis as a further mechanism. However, diet-induced obese UCP1 WT and KO mice have comparable weight loss upon celastrol treatment, and celastrol treatment has no effect on energy expenditure under ambient housing or thermoneutral conditions. Overall, our results suggest that celastrol-induced weight loss is hypophagia driven and age-dependently mediated by functional leptin signaling. Our data encourage reconsideration of therapeutic antiobesity strategies built on leptin sensitization.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Proteína Desacopladora 1/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Camundongos Knockout , Obesidade/genética , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Desacopladora 1/genética
5.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290465

RESUMO

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Assuntos
Apoptose , Glutationa Peroxidase/metabolismo , Convulsões/metabolismo , Selênio/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Glutationa Peroxidase/genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/toxicidade , Interneurônios/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Convulsões/etiologia
6.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518562

RESUMO

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transdução de Sinais , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica , Retículo Endoplasmático/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Homeostase , Camundongos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
7.
Cell Rep ; 10(4): 505-15, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25620701

RESUMO

Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Antígenos CD36/metabolismo , Ubiquinona/metabolismo , Animais , Ataxia/genética , Ataxia/metabolismo , Antígenos CD36/genética , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Oxirredução , Ácido Palmítico/metabolismo , Termogênese/genética , Termogênese/fisiologia , Ubiquinona/deficiência , Ubiquinona/genética
8.
Best Pract Res Clin Endocrinol Metab ; 28(5): 661-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256762

RESUMO

Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of the pathology of the metabolic syndrome, which obstructs the development of effective therapeutic strategies. While hypothalamic neuropathy is a potential candidate that may contribute to the pathogenesis of the metabolic syndrome, the specific causes of hypothalamic neuropathy remain largely unknown. During different stages of high-calorie diet-induced metabolic syndrome, the hypothalamus undergoes gliosis and angiogenesis, both of which potentially reflect ongoing inflammatory processes. This overview discusses current data suggesting a role for hypothalamic inflammation-like processes in diet-induced metabolic diseases and provides a perspective on how to unravel molecular mechanisms of "hypothalamic inflammation" in order to develop anti-obesity therapeutic strategies.


Assuntos
Hipotálamo/metabolismo , Síndrome Metabólica/metabolismo , Rede Nervosa/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA