RESUMO
The transfer of ancestral plastid genomes into mitochondrial genomes to generate mitochondrial plastid DNA (MTPT) is known to occur in plants, but its impacts on mitochondrial genome complexity and the potential for causing a false-positive DNA barcoding paradox have been underestimated. Here, we assembled the organelle genomes of Cynanchum wilfordii and C. auriculatum, which are indigenous medicinal herbs in Korea and China, respectively. In both species, it is estimated that 35% of the ancestral plastid genomes were transferred to mitochondrial genomes over the past 10 million years and remain conserved in these genomes. Some plastid barcoding markers co-amplified the conserved MTPTs and caused a barcoding paradox, resulting in mis-authentication of botanical ingredients and/or taxonomic mis-positioning. We identified dynamic and lineage-specific MTPTs that have contributed to mitochondrial genome complexity and might cause a putative barcoding paradox across 81 plant species. We suggest that a DNA barcoding guidelines should be developed involving the use of multiple markers to help regulate economically motivated adulteration.
Assuntos
Cynanchum/genética , Código de Barras de DNA Taxonômico/normas , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Cynanchum/classificação , Código de Barras de DNA Taxonômico/métodos , Evolução Molecular , FilogeniaRESUMO
BACKGROUND: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. METHODS: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. RESULTS: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. CONCLUSION: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.
RESUMO
Ginsenosides are dammarane-type or triterpenoidal saponins that contribute to the various pharmacological activities of the medicinal herb Panax ginseng. The putative biosynthetic pathway for ginsenoside biosynthesis is known in P. ginseng, as are some of the transcripts and enzyme-encoding genes. However, few genes related to the UDP-glycosyltransferases (UGTs), enzymes that mediate glycosylation processes in final saponin biosynthesis, have been identified. Here, we generated three replicated Illumina RNA-Seq datasets from the adventitious roots of P. ginseng cultivar Cheongsun (CS) after 0, 12, 24, and 48 h of treatment with methyl jasmonate (MeJA). Using the same CS cultivar, metabolomic data were also generated at 0 h and every 12-24 h thereafter until 120 h of MeJA treatment. Differential gene expression, phylogenetic analysis, and metabolic profiling were used to identify candidate UGTs. Eleven candidate UGTs likely to be involved in ginsenoside glycosylation were identified. Eight of these were considered novel UGTs, newly identified in this study, and three were matched to previously characterized UGTs in P. ginseng. Phylogenetic analysis further asserted their association with ginsenoside biosynthesis. Additionally, metabolomic analysis revealed that the newly identified UGTs might be involved in the elongation of glycosyl chains of ginsenosides, especially of protopanaxadiol (PPD)-type ginsenosides.
Assuntos
Ginsenosídeos/biossíntese , Panax/enzimologia , Panax/metabolismo , Sapogeninas/metabolismo , Regulação da Expressão Gênica de Plantas , Panax/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Fluorescence in situ hybridization (FISH) is used to visualize the distribution of DNA elements within a genome. Conventional methods for FISH take 1-2 days. Here, we developed a simplified, rapid FISH technique using pre-labeled oligonucleotide probes (PLOPs) and tested the procedure using 18 PLOPs from 45S and 5S rDNA, Arabidopsis-type telomere, and newly-identified Panax ginseng-specific tandem repeats. The 16 developed rDNA PLOPs can be universally applied to plants and animals. The telomere PLOPs can be utilized in most plants with Arabidopsis-type telomeres. The ginseng-specific PLOP can be used to distinguish P. ginseng from related Panax species. Differential labeling of PLOPs allowed us to simultaneously visualize different target loci while reducing the FISH hybridization time from ~16 h to 5 min. PLOP-FISH is efficient, reliable, and rapid, making it ideal for routine analysis, especially of newly sequenced genomes using either universal or specific targets, such as novel tandem repeats identified from whole-genome sequencing data.
Assuntos
Sondas de DNA/química , Hibridização in Situ Fluorescente/métodos , Sequência de Bases , DNA Ribossômico/genética , Panax/genética , Sequências Repetitivas de Ácido Nucleico , Telômero , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. DESCRIPTION: The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. CONCLUSION: This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.
Assuntos
Genoma de Planta/genética , Panax/genética , Panax/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Ginsenosídeos/metabolismoRESUMO
Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.
Assuntos
Genoma de Planta/genética , Panax/genética , Adaptação Biológica/genética , Evolução Biológica , Diploide , Genes de Cloroplastos/genética , Genes de Plantas/genética , Ginsenosídeos/biossíntese , Panax/metabolismo , TetraploidiaRESUMO
Panax ginseng C.A. Meyer is a traditional medicinal herb that produces bioactive compounds such as ginsenosides. Here, we investigated the diversity of ginsenosides and related genes among five genetically fixed inbred ginseng cultivars (Chunpoong [CP], Cheongsun [CS], Gopoong [GO], Sunhyang [SH], and Sunun [SU]). To focus on the genetic diversity related to ginsenoside biosynthesis, we utilized in vitro cultured adventitious roots from the five cultivars grown under controlled environmental conditions. PCA loading plots based on secondary metabolite composition classified the five cultivars into three groups. We selected three cultivars (CS, SH, and SU) to represent the three groups and conducted further transcriptome and gas chromatography-mass spectrometry analyses to identify genes and intermediates corresponding to the variation in ginsenosides among cultivars. We quantified ginsenoside contents from the three cultivars. SH had more than 12 times the total ginsenoside content of CS, with especially large differences in the levels of panaxadiol-type ginsenosides. The expression levels of genes encoding squalene epoxidase (SQE) and dammarenediol synthase (DDS) were also significantly lower in CS than SH and SU, which is consistent with the low levels of ginsenoside produced in this cultivar. Methyl jasmonate (MeJA) treatment increased the levels of panaxadiol-type ginsenosides up to 4-, 13-, and 31-fold in SH, SU, and CS, respectively. MeJA treatment also greatly increased the quantity of major intermediates and the expression of the underlying genes in the ginsenoside biosynthesis pathway; these intermediates included squalene, 2,3-oxidosqualene, and dammarenediol II, especially in CS, which had the lowest ginsenoside content under normal culture conditions. We conclude that SQE and DDS are the most important genetic factors for ginsenoside biosynthesis with diversity among ginseng cultivars.
RESUMO
BACKGROUND: Korean ginseng (Panax ginseng C.A. Meyer) is a highly effective medicinal plant containing ginsenosides with various pharmacological activities, whose roots are produced commercially for crude drugs. RESULTS: Here, we used the Illumina platform to generate over 232 million RNA sequencing reads from four root samples, including whole roots from one-year-old plants and three types of root tissue from six-year-old plants (i.e., main root bodies, rhizomes, and lateral roots). Through de novo assembly and reference-assisted selection, we obtained a non-redundant unigene set consisting of 55,949 transcripts with an average length of 1,250 bp. Among transcripts in the unigene set, 94 % were functionally annotated via similarity searches against protein databases. Approximately 28.6 % of the transcripts represent novel gene sequences that have not previously been reported for P. ginseng. Digital expression profiling revealed 364 genes showing differential expression patterns among the four root samples. Additionally, 32 were uniquely expressed in one-year-old roots, while seven were uniquely expressed in six-year-old root tissues. We identified 38 transcripts encoding enzymes involved in ginsenoside biosynthesis pathways and 189 encoding UDP-glycosyltransferases. CONCLUSION: Our analysis provides new insights into the role of the root transcriptome in development and secondary metabolite biosynthesis in P. ginseng.
Assuntos
Panax/genética , Raízes de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Ginsenosídeos/biossíntese , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNARESUMO
BACKGROUND: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. METHODS: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. RESULTS: Assemblies were generated from â¼85 million and â¼77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases. We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. CONCLUSION: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.