Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Reprod ; 31(4): 367-383, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29948007

RESUMO

KEY MESSAGE: Tomato pollen grains have the capacity for ethylene production, possessing specific components of the ethylene-biosynthesis and -signaling pathways, being affected/responsive to high-temperature conditions. Exposure of plants to heat stress (HS) conditions reduces crop yield and quality, mainly due to sensitivity of pollen grains. Recently, it was demonstrated that ethylene, a gaseous plant hormone, plays a significant role in tomato pollen heat-tolerance. It is not clear, however, whether, or to what extent, pollen grains are dependent on the capacity of the surrounding anther tissues for ethylene synthesis and signaling, or can synthesize this hormone and possess an active signaling pathway. The aim of this work was (1) to investigate if isolated, maturing and mature, tomato pollen grains have the capacity for ethylene production, (2) to find out whether pollen grains possess an active ethylene-biosynthesis and -signaling pathway and characterize the respective tomato pollen components at the transcript level, (3) to look into the effect of short-term HS conditions. Results from accumulation studies showed that pollen, anthers, and flowers produced ethylene and HS affected differentially ethylene production by (rehydrated) mature pollen, compared to anthers and flowers, causing elevated ethylene levels. Furthermore, several ethylene synthesis genes were expressed, with SlACS3 and SlACS11 standing out as highly HS-induced genes of the pollen ethylene biosynthesis pathway. Specific components of the ethylene-signaling pathway as well as several ethylene-responsive factors were expressed in pollen, with SlETR3 (ethylene receptor; named also NR, for never ripe) and SlCTR2 (constitutive triple response2) being HS responsive. This work shows that tomato pollen grains have the capacity for ethylene production, possessing active ethylene-biosynthesis and -signaling pathways, highlighting specific pollen components that serve as a valuable resource for future research on the role of ethylene in pollen thermotolerance.


Assuntos
Etilenos/biossíntese , Pólen/metabolismo , Solanum lycopersicum/fisiologia , Termotolerância , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Transdução de Sinais
2.
J Proteome Res ; 14(11): 4463-71, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26419256

RESUMO

Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Peptídeos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Pólen/genética , Proteoma/isolamento & purificação , Solanum lycopersicum/genética , Adaptação Fisiológica/genética , Algoritmos , Sequência de Aminoácidos , Cromatografia Líquida , Temperatura Alta , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Espectrometria de Massas/estatística & dados numéricos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Peptídeos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Análise de Componente Principal , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA