Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Surg Med ; 56(3): 305-314, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38291819

RESUMO

OBJECTIVE: Photobiomodulation at higher irradiances has great potential as a pain-alleviating method that selectively inhibits small diameter nerve fibers and corresponding sensory experiences, such as nociception and heat sensation. The longevity and magnitude of these effects as a function of laser irradiation parameters at the nerve was explored. METHODS: In a rodent chronic pain model (spared nerve injury-SNI), light was applied directly at the sural nerve with four delivery schemes: two irradiance levels (7.64 and 2.55 W/cm2 ) for two durations each, corresponding to either 4.8 or 14.4 J total energy, and the effect on sensory hypersensitivities was evaluated. RESULTS: At emitter irradiances of 7.64 W/cm2 (for 240 s), 2.55 W/cm2 (for 720 s), and 7.64 W/cm2 (for 80 s) the heat hypersensitivity was relieved the day following photobiomodulation (PBM) treatment by 37 ± 8.1% (statistically significant, p < 0.001), 26% ± 6% (p = 0.072), and 28 ± 6.1% (statistically significant, p = 0.032), respectively, and all three treatments reduced the hypersensitivity over the course of the experiment (13 days) at a statistically significant level (mixed-design analysis of variance, p < 0.05). The increases in tissue temperature (5.3 ± 1.0 and 1.3 ± 0.4°C from 33.3°C for the higher and lower power densities, respectively) at the neural target were well below those typically associated with permanent action potential disruption. CONCLUSIONS: The data from this study support the use of direct PBM on nerves of interest to reduce sensitivities associated with small-diameter fiber activity.


Assuntos
Dor Crônica , Terapia com Luz de Baixa Intensidade , Tecido Nervoso , Humanos , Terapia com Luz de Baixa Intensidade/métodos
2.
Alcohol Clin Exp Res ; 45(1): 69-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206417

RESUMO

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is caused by prenatal alcohol exposure (PAE), the intake of ethanol (C2 H5 OH) during pregnancy. Features of FASD cover a range of structural and functional defects including congenital heart defects (CHDs). Folic acid and choline, contributors of methyl groups to one-carbon metabolism (OCM), prevent CHDs in humans. Using our avian model of FASD, we have previously reported that betaine, another methyl donor downstream of choline, prevents CHDs. The CHD preventions are substantial but incomplete. Ethanol causes oxidative stress as well as depleting methyl groups for OCM to support DNA methylation and other epigenetic alterations. To identify more compounds that can safely and effectively prevent CHDs and other effects of PAE, we tested glutathione (GSH), a compound that regulates OCM and is known as a "master antioxidant." METHODS/RESULTS: Quail embryos injected with a single dose of ethanol at gastrulation exhibited congenital defects including CHDs similar to those identified in FASD individuals. GSH injected simultaneously with ethanol not only prevented CHDs, but also improved survival and prevented other PAE-induced defects. Assays of hearts at 8 days (HH stage 34) of quail development, when the heart normally has developed 4-chambers, showed that this single dose of PAE reduced global DNA methylation. GSH supplementation concurrent with PAE normalized global DNA methylation levels. The same assays performed on quail hearts at 3 days (HH stage 19-20) of development, showed no difference in global DNA methylation between controls, ethanol-treated, GSH alone, and GSH plus ethanol-treated cohorts. CONCLUSIONS: GSH supplementation shows promise to inhibit effects of PAE by improving survival, reducing the incidence of morphological defects including CHDs, and preventing global hypomethylation of DNA in heart tissues.


Assuntos
Metilação de DNA/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Glutationa/uso terapêutico , Cardiopatias Congênitas/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Depressores do Sistema Nervoso Central/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Etanol/efeitos adversos , Feminino , Glutationa/farmacologia , Cardiopatias Congênitas/induzido quimicamente , Gravidez , Codorniz
3.
Alcohol Clin Exp Res ; 41(11): 1917-1927, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28888041

RESUMO

BACKGROUND: Despite decades of public education about dire consequences of prenatal alcohol exposure (PAE), drinking alcohol during pregnancy remains prevalent. As high as 40% of live-born infants exposed to alcohol during gestation and diagnosed with fetal alcohol syndrome have congenital heart defects that can be life-threatening. In animal models, the methyl donor betaine, found in foods such as wheat bran, quinoa, beets, and spinach, ameliorated neurobehavioral deficits associated with PAE, but effects on heart development are unknown. METHODS: Previously, we modeled a binge drinking episode during the first trimester in avian embryos. Here, we investigated whether betaine could prevent adverse effects of alcohol on heart development. Embryos exposed to ethanol (EtOH) with and without an optimal dose of betaine (5 µM) were analyzed at late developmental stages. Cardiac morphology parameters were rapidly analyzed and quantified using optical coherence tomography. DNA methylation at early stages was detected by immunofluorescent staining for 5-methylcytosine in sections of embryos treated with EtOH or cotreated with betaine. RESULTS: Compared to EtOH-exposed embryos, betaine-supplemented embryos had higher late-stage survival rates and fewer gross head and body defects than seen after alcohol exposure alone. Betaine also reduced the incidence of late-stage cardiac defects such as absent vessels, abnormal atrioventricular (AV) valves, and hypertrophic ventricles. Furthermore, betaine cotreatment brought measurements of great vessel diameters, interventricular septum thickness, and AV leaflet volumes in betaine-supplemented embryos close to control values. Early-stage 5-methycytosine staining revealed that DNA methylation levels were reduced by EtOH exposure and normalized by co-administration with betaine. CONCLUSIONS: This is the first study demonstrating efficacy of the methyl donor betaine in alleviating cardiac defects associated with PAE. These findings highlight the therapeutic potential of low-concentration betaine doses in mitigating PAE-induced birth defects and have implications for prenatal nutrition policies, especially for women who may not be responsive to folate supplementation.


Assuntos
Betaína/administração & dosagem , Etanol/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Coturnix , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Cardiopatias Congênitas/diagnóstico por imagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA