Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 263: 113218, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32755650

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng Meyer) is a very well-known traditional herbal medicine that has long been used to enhance the body's immunity. Because it is a type of ginseng, it is believed that wild simulated ginseng (WSG) also has immune-enhancing activity. However, study on the immune-enhancing activity of WSG is quite insufficient compared to ginseng. AIM OF THE STUDY: In this study, we evaluated immune-enhancing activity of WSG through macrophage activation to provide a scientific basis for the immune enhancing activity of WSG. MATERIALS AND METHODS: The effect of WSG on viability of RAW264.7 cells was evaluated by MTT assay. The NO level was measured by Griess reagent. The expression levels of mRNA or protein in WSG-treated RAW264.7 cells were analyzed by RT-PCR and Western blot, respectively. RESULTS: WSG increased the production of immunomodulators such as NO, iNOS, COX-2, IL-1ß, IL-6 and TNF-α and activated phagocytosis in mouse macrophages RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by WSG. WSG activated MAPK, NF-κB and PI3K/AKT signaling pathways, and inhibition of such signaling activation blocked WSG-mediated production of immunomodulators. In addition, activation of MAPK, NF-κB and PI3K/AKT signaling pathways by WSG was reversed by TLR2 or TLR4 inhibition. CONCLUSION: Based on the results of this study, WSG is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, it is thought that WSG have the potential to be used as an agent for enhancing immunity.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Panax , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/fisiologia , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7
2.
Plants (Basel) ; 9(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630052

RESUMO

The active compounds of medicinal plants vary in composition and content depending on environmental factors, such as light, temperature, and soil. According to the Korean Pharmacopoeia standards for herbal medicine, the sum of nodakenin, decursin, and decursinolangelate, which are the marker components of Korean Angelica, should be at least 6.0 g/100 g. However, the content of the components in Korean Angelica cultivated in South Korea often fall below 6.0 g/100 g, due to weather conditions and cultivation site characteristics. This study aimed to gather information about environmental factors that affect the root growth and the content of active compounds. In total, 18 cultivation sites in Pyeongchang, Jecheon, and Bonghwa regions in Korea were investigated for this study. Environmental factors, such as the monthly mean temperature, mean relative humidity, duration of sunshine, total precipitation, soil acidity, and the characteristics of soil nutrient, were investigated over the growing season from April to October 2017. As for the growth characteristics, the dry weight of roots of Korean Angelica was measured. The sum of the contents of the three active compounds was 5.3-7.0 g/100 g and the nodakenin content was 0.3-1.3 g/100 g in the cultivation sites. This study concludes that the root yields in the cultivation sites would be improved if weather conditions are maintained with similar levels as those in their natural habitats. Additionally, the environment that improves root growth did not increase the content of active compounds; however, when there was a lot of gravel or high temperatures during the growth period, the content of active compounds was relatively high.

3.
Biol Pharm Bull ; 37(6): 1021-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24882413

RESUMO

Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).


Assuntos
Cinamatos/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Extratos Vegetais/química , Tribulus/química , Proteínas Virais/antagonistas & inibidores , Amidas , Cinamatos/isolamento & purificação , Cinamatos/uso terapêutico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/isolamento & purificação , Inibidores de Cisteína Proteinase/uso terapêutico , Relação Dose-Resposta a Droga , Escherichia coli/genética , Frutas/química , Humanos , Concentração Inibidora 50 , Cinética , Estrutura Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/virologia , Relação Estrutura-Atividade , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA