Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(11): e2104629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076161

RESUMO

Photobiomodulation (PBM) has received attention due to its potential for improving tissue function and enhancing regeneration in stroke. A lightweight, compact, and simple system of miniaturized electronic devices consisting of packaged light-emitting diodes (LEDs) that incorporates a flexible substrate for in vivo brain PBM in a mouse model is developed. Using this device platform, the preventive and therapeutic effects of PBM affixed to the exposed skull of mice in the photothrombosis and middle cerebral artery occlusion stroke model are evaluated. Among the wavelength range of 630, 850, and 940 nm LED array, the PBM with 630-nm LED array is proved to be the most effective for reducing the infarction volume and neurological impairment after ischemic stroke. Moreover, the PBM with 630 nm LED array remarkably improves the capability of spatial learning and memory in the chronic poststroke phase, attenuates AIM2 inflammasome activation and inflammasome-mediated pyroptosis, and modulates microglial polarization in the hippocampus and cortex 7 days following ischemic stroke. Thus, PBM may prevent tissue and functional damage in acute ischemic injury, thereby attenuating the development of cognitive impairment after stroke.


Assuntos
AVC Isquêmico , Terapia com Luz de Baixa Intensidade , Acidente Vascular Cerebral , Animais , Inflamassomos , Camundongos , Crânio
2.
Mater Sci Eng C Mater Biol Appl ; 128: 112309, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474860

RESUMO

Recently, black phosphorus (BP) has garnered great attention as one of newly emerging two-dimensional nanomaterials. Especially, the degraded platelets of BP in the physiological environment were shown to be nontoxic phosphate anions, which are a component of bone tissue and can be used for mineralization. Here, our study presents the potential of BP as biofunctional and biocompatible nanomaterials for the application to bone tissue engineering and regeneration. An ultrathin layer of BP nanodots (BPNDs) was created on a glass substrate by using a flow-enabled self-assembly process, which yielded a highly uniform deposition of BPNDs in a unique confined geometry. The BPND-coated substrates represented unprecedented favorable topographical microenvironments and supportive matrices suitable for the growth and survival of MC3T3-E1 preosteoblasts. The prepared substrates promoted the spontaneous osteodifferentiation of preosteoblasts, which had been confirmed by determining alkaline phosphatase activity and extracellular calcium deposition as early- and late-stage markers of osteogenic differentiation, respectively. Furthermore, the BPND-coated substrates upregulated the expression of some specific genes (i.e., RUNX2, OCN, OPN, and Vinculin) and proteins, which are closely related to osteogenesis. Conclusively, our BPND-coating strategy suggests that a biologically inert surface can be readily activated as a cell-favorable nanoplatform enabled with excellent biocompatibility and osteogenic ability.


Assuntos
Osteoblastos , Osteogênese , Diferenciação Celular , Fósforo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA