Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Food ; 27(4): 330-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387002

RESUMO

Gastric cancer is the fifth most common cancer globally and the third leading cause of cancer-related mortality. Existing treatment strategies for gastric cancer often present numerous side effects. Consequently, recent studies have shifted toward devising new treatments grounded in safer natural substances. α-Pinene, a natural terpene found in the essential oils of various plants, such as Lavender angustifolia and Satureja myrtifolia, displays antioxidant, antibiotic, and anticancer properties. Yet, its impact on gastric cancer remains unexplored. This research assessed the effects of α-pinene in vitro using a human gastric adenocarcinoma cell-line (AGS) human gastric cancer cells and in vivo via a xenograft mouse model. The survival rate of AGS cells treated with α-pinene was notably lower than that of the control group, as revealed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. This decline in cell viability was linked to apoptosis, as verified by 4',6-diamidino-2-phenylindole and annexin V/propidium iodide staining. The α-pinene-treated group exhibited elevated cleaved-poly (ADP-ribose) polymerase and B cell lymphoma 2 (Bcl-2)-associated X (Bax) levels and reduced Bcl-2 levels compared with the control levels. Moreover, α-pinene triggered the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 within the mitogen-activated protein kinase (MAPK) pathway. In the xenograft mouse model, α-pinene induced apoptosis through the MAPK pathway, devoid of toxicity. These findings position α-pinene as a promising natural therapeutic for gastric cancer.


Assuntos
Monoterpenos Bicíclicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células
2.
Environ Sci Technol ; 57(48): 19663-19677, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948609

RESUMO

A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (-46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (-8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10-9) and acoustic mass density (313.3 ± 63.3 ng cm-2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact.


Assuntos
Arabidopsis , Nanopartículas , Eletricidade Estática , Celulose/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Parede Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA