Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Appl Biochem Biotechnol ; 193(2): 335-348, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32959326

RESUMO

A total 42.68 g/L monosaccharide with 0.10 g/L HMF was obtained from 10% (w/v) Kappaphycus alvarezii with thermal acid hydrolysis using 350 mM HNO3 at 121 °C for 60 min and enzymatic saccharification with a 1:1 mixture of Viscozyme L and Celluclast 1.5 L for 72 h. To enhance the galactose utilization rate, fermentation was performed with overexpression of GAL1 (galactokinase), GAL7 (galactose-1-phosphate uridyltransferase), GAL10 (UDP-glucose-4-epimerase), and PGM2 (phosphoglucomutase 2) in Saccharomyces cerevisiae CEN.PK2 using CCW12 as a strong promoter. Among the strains, the overexpression of PGM2 showed twofold high galactose utilization rate (URgal) and produced ethanol 1.4-fold more than that of the control. Transcriptional analysis revealed the increase of PGM2 transcription level leading to enhance glucose-6-phosphate and fructose-6-phosphate and plays a key role in ensuring a higher glycolytic flux in the PGM2 strain. This finding shows particular importance in biofuel production from seaweed because galactose is one of the major monosaccharides in seaweeds such as K. alvarezii.


Assuntos
Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Extratos Vegetais/química , Rodófitas/química , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Galactose/química
2.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322712

RESUMO

Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1-9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleo de Semente do Linho/química , Antineoplásicos Fitogênicos/isolamento & purificação , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Polimerização/efeitos dos fármacos , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores
3.
Am J Chin Med ; 48(8): 1895-1913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33308098

RESUMO

Olea europaea is a beneficial edible plant with a number of biological activities like anti-inflammatory, anti-oxidant, antithrombic, antihyperglycemic, and anti-ischemic activities. The mechanisms behind the antiphotoaging and anti-inflammatory effects of Olea europaea are not fully understood. To investigate how an ethanol extract of Olea europaea (Oe-EE) exerts these effects, we explored its activities in human keratinocytes and dermal fibroblasts. We assessed the anti-oxidant effects of Oe-EE via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2[Formula: see text]-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays and measured the expression levels of matrix metalloproteinases (MMPs), cyclooxygenase-2, interleukin (IL)-6, tumor necrosis factor (TNF)-[Formula: see text], and moisturizing factors. Antiphotoaging and anti-inflammatory mechanisms of Oe-EE were explored by assessing signaling molecule activation via immunoblotting. Oe-EE treatment decreased the mRNA expression level of MMPs, cyclooxygenase-2, IL-6, and TNF-[Formula: see text] and restored type I collagen, filaggrin, and sirtuin 1 expression in UVB-irradiated cells. Furthermore, Oe-EE inhibited the activities of several activator protein 1 regulatory enzymes, including extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), and inhibited nuclear factor (NF)-[Formula: see text]B pathway signaling proteins. Therefore, our results indicate that Oe-EE has photoaging-protective and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios , NF-kappa B/metabolismo , Olea/química , Extratos Vegetais/farmacologia , Protetores contra Radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição AP-1/metabolismo , Antioxidantes , Derme/citologia , Fibroblastos/metabolismo , Proteínas Filagrinas , Células HaCaT , Humanos , Queratinócitos/metabolismo , Extratos Vegetais/isolamento & purificação , Raios Ultravioleta/efeitos adversos
5.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212959

RESUMO

Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/metabolismo , Patrinia/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Animais , Etanol/química , Regulação da Expressão Gênica/efeitos dos fármacos , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-MSH/farmacologia
6.
Biomolecules ; 10(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512905

RESUMO

Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Linho/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
7.
Oxid Med Cell Longev ; 2019: 9679731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073356

RESUMO

Ethnopharmacological Relevance. Penthorum chinense Pursh (Penthoraceae) is a traditional herbal plant that has been used in China for the treatment of jaundice, cholecystitis, edema, and infectious hepatitis. In addition, the Korea Medicinal Plant Dictionary states that Penthorum chinense Pursh can be used to treat contusions and skin bruises by improving blood flow. Recent studies have shown that Penthorum chinense Pursh ethanol extract (Pc-EE) exhibits strong antioxidant effects. In this study, we examined the effects of Pc-EE on UVB-induced or H2O2-induced oxidative stress, as well as its antimelanogenic properties. Cell viability, matrix metalloproteinase (MMP) expression, cyclooxygenease-2 (COX-2), and interleukin-6 (IL-6) expression and moisturizing factors were investigated in keratinocytes. Collagen synthesis induction was measured in HEK293T cells. For melanogenesis, the effects of Pc-EE on melanin content and tyrosinase activity were measured. Additionally, the antimelanogenic- and autophagy-inducing activities of Pc-EE were examined using immunoblotting and confocal microscopy. Pc-EE protected HaCaT cells against death from UVB irradiation- or H2O2-induced oxidative stress. Pc-EE increased the promoter activity of the type 1 procollagen gene Col1A1 and decreased the expression of MMPs, COX-2, IL-6, and hyaluronidase induced by UVB irradiation- or H2O2-induced oxidative stress. Pc-EE showed a strong antioxidant effect in the DPPH assay. In α-melanocyte-stimulating hormone- (α-MSH-) stimulated B16F10 cells, Pc-EE reduced melanin production, decreased tyrosinase expression and microphthalmia-associated transcription factor (MITF) protein levels, and decreased the phosphorylation levels of p38 and JNK. In HEK293T cells, Pc-EE promoted the expression of GFP-LC3B. In B16F10 cells, the LC3B and melanin contents were reduced by Pc-EE and were restored by the autophagy inhibitor 3-methyladenine (3-MA). These results suggest that Pc-EE can be used as a skin protection agent due to its antiapoptotic, antiaging, anti-inflammatory, and antimelanogenic properties.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Etanol/química , Melaninas/antagonistas & inibidores , Extratos Vegetais/farmacologia , Saxifragaceae/química , Envelhecimento da Pele/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Colágeno/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/patologia , Melanoma Experimental/patologia , Camundongos , Oxirredução , Transdução de Sinais/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta , alfa-MSH/farmacologia
8.
J Ethnopharmacol ; 235: 38-46, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30710734

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L., (Oleaceae) has been used widely in folk medicine in the European Mediterranean islands, India, Asia, and other parts of the world. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms of how it inhibits the inflammatory response are not fully understood. In this study, we sought to identify the anti-inflammatory mechanisms of this plant. MATERIALS AND METHODS: Using macrophages, we investigated the effects of O. europaea L. methanol extract (Oe-ME) and ethanol extract (Oe-EE) on the production of inflammatory mediator nitric oxide (NO) and prostaglandin E2 (PGE2), the expression levels of pro-inflammatory genes and intracellular inflammatory signaling activities. RESULTS: Oe-ME and Oe-EE suppressed the production of NO in lipopolysaccharide-(LPS-), Pam3CSK4-, and poly (I:C)-stimulated RAW264.7 cells; importantly, no cytotoxicity was observed. Oe-ME and Oe-EE reduced production of PGE2 without exhibiting cytotoxicity. The mRNA expression levels of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), IL-6, IL-1ß, and tumor necrosis factor (TNF)-α were down-regulated by Oe-ME and Oe-EE. Nuclear fraction and whole lysate immunoblotting analyses and overexpression experiments strongly suggested that Oe-ME decreased the translocation of p65 and p50 (nuclear factors of the NF-κB subunit) as well as Src and Syk. CONCLUSION: These results suggest that Oe-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Olea/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Dinoprostona/metabolismo , Etanol/química , Células HEK293 , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Metanol/química , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/metabolismo , Quinases da Família src/metabolismo
9.
J Ethnopharmacol ; 231: 1-9, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415059

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mycetia cauliflora Reinw. (Rubiaceae) has been used as a traditional remedy to ameliorate clinical signs of inflammatory diseases, including pain, inflammation, ulcers, and wounds. Among the Mycetia subfamilies, the molecular and cellular mechanisms of Mycetia longifolia (Rubiaceae) have been studied. However, those of Mycetia cauliflora are not clearly understood. Comprehensive investigation of this plant is necessary to evaluate its potential for ethnopharmacological use. MATERIALS: and methods: The activities of Mycetia cauliflora methanol extract (Mc-ME) on the secretion of inflammatory mediators, the mRNA expression of proinflammatory cytokines, and identification of its molecular targets were elucidated using lipopolysaccharide (LPS)-induced macrophage-like cells. Moreover, the suppressive actions of Mc-ME were examined in an LPS-induced peritonitis mouse model. RESULTS: At nontoxic concentrations, Mc-ME downregulated the release of nitric oxide (NO), the mRNA expression of inducible nitric oxide synthase (iNOS), and the mRNA expression of interleukin (IL)-1ß from LPS-activated RAW264.7 cells. This extract also inhibited the nuclear translocation of p65 and p50 and the phosphorylation of IκBα, IKK, and AKT. Western blot analysis and in vitro kinase assays confirmed that phosphoinositide-dependent kinase-1 (PDK1) is the direct immunopharmacological target of Mc-ME effect. In addition, Mc-ME significantly reduced inflammatory signs in an animal model of acute peritonitis. These effects were associated with decreased NO production and decreased AKT phosphorylation. CONCLUSION: Our results suggest that Mc-ME displays anti-inflammatory actions in LPS-treated macrophage-like cells and in an animal model of acute inflammatory disease. These actions are preferentially managed by targeting PDK1 in the nuclear factor (NF)-κB signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Rubiaceae , Animais , Anti-Inflamatórios/uso terapêutico , Células HEK293 , Humanos , Interleucina-1beta/genética , Lipopolissacarídeos , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/metabolismo , Extratos Vegetais/uso terapêutico , Piruvato Desidrogenase Quinase de Transferência de Acetil , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Solventes/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-31929819

RESUMO

Trichosanthes tricuspidata Lour., also known as T. palmata Roxb, T. bracteata Lam., T. puber Blume, and Modecca bracteata, is a vine belonging to the Cucurbitaceae family (English name: redball snake gourd). Distributed in China, South and East Asia, and tropical Australia, it has been traditionally used as a medicinal plant for its antifever, laxative, anthelmintic properties and for migraine treatment. In this paper, we examined the effects of Trichosanthes tricuspidata Lour. ethanol extract (Tt-ME) in vitro and in vivo. To confirm the effects of Tt-ME on inflammatory responses, we conducted experimental analyses including level of nitric oxide (NO) production, RT-PCR, and immunoblotting and using a HCl/EtOH-induced gastritis animal model. Tt-ME attenuated the release of NO and decreased mRNA levels of inducible NO synthase (iNOS), TNF-α, and IL-6 in lipopolysaccharide- (LPS-) induced macrophages in a concentration-dependent manner. Tt-ME time-dependently suppressed nuclear translocation of nuclear factor kappa B (NF-κB) subunits p50 and p65, activator protein (AP-1) subunits c-Fos and c-Jun, and STAT3 transcriptional activity by inhibiting nuclear translocation of p50, p65, c-Fos, c-Jun, and STAT3. Tt-ME significantly downregulated NF-κB, MAPK, and JAK2 signaling by targeting Syk, Src, and IRAK1 protein kinases. Furthermore, matrix metalloproteinase-9 (MMP-9) expression and cell migration were observed to be downregulated by Tt-ME in LPS-activated macrophages. In vivo studies on Tt-ME also produced similar trends in Hcl/EtOH-induced gastritis mouse models by inhibiting proinflammatory cytokines and the inflammatory signaling pathway. Our results strongly suggest that Tt-ME exerted anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory disease.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29725354

RESUMO

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.

12.
J Ethnopharmacol ; 220: 57-66, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29609010

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. AIM OF THE STUDY: In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. MATERIALS AND METHODS: Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. RESULTS: Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. CONCLUSION: The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties.


Assuntos
Apoptose/efeitos dos fármacos , Artemisia/química , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etanol/química , Células HEK293 , Humanos , Medicina Tradicional , Melaninas/metabolismo , Camundongos , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
13.
Am J Chin Med ; 46(2): 435-452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463104

RESUMO

Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.


Assuntos
Anti-Inflamatórios , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Metanol , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/metabolismo
14.
J Ginseng Res ; 41(3): 386-391, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701882

RESUMO

BACKGROUND: Korean Red Ginseng (KRG) is an ethnopharmacological plant that is traditionally used to improve the body's immune functions and ameliorate the symptoms of various diseases. However, the antitumorigenic effects of KRG and its underlying molecular and cellular mechanisms are not fully understood in terms of its individual components. In this study, in vitro and in vivo antitumorigenic activities of KRG were explored in water extract (WE), saponin fraction (SF), and nonsaponin fraction (NSF). METHODS: In vitro antitumorigenic activities of WE, SF, and NSF of KRG were investigated in the C6 glioma cell line using cytotoxicity, migration, and proliferation assays. The underlying molecular mechanisms of KRG fractions were determined by examining the signaling cascades of apoptotic cell death by semiquantitative reverse transcriptase polymerase chain reaction and Western blot analysis. The in vivo antitumorigenic activities of WE, SF, and NSF were investigated in a xenograft mouse model. RESULTS: SF induced apoptotic death of C6 glioma cells and suppressed migration and proliferation of C6 glioma cells, whereas WE and NSF neither induced apoptosis nor suppressed migration of C6 glioma cells. SF downregulated the expression of the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2) and upregulated the expression of the pro-apoptotic gene Bcl-2-associated X protein (BAX) in C6 glioma cells but had no effect on the expression of the p53 tumor-suppressor gene. Moreover, SF treatment resulted in activation of caspase-3 as evidenced by increased levels of cleaved caspase-3. Finally, WE, SF, and NSF exhibited in vivo antitumorigenic activities in the xenograft mouse model by suppressing the growth of grafted CT-26 carcinoma cells without decreasing the animal body weight. CONCLUSION: These results suggest that WE, SF, and NSF of KRG are able to suppress tumor growth via different molecular and cellular mechanisms, including induction of apoptosis and activation of immune cells.

15.
J Ethnopharmacol ; 206: 1-7, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28502904

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nuclear factor-kappa B (NF-κB) plays pivotal roles in inflammation. Src and Syk are two tyrosine kinases that act upstream of NF-κB signaling. Although Achyranthes aspera L. (A. aspera) has been used as a traditional medicine to treat fevers and inflammatory ailments and heal wounds, the molecular mechanisms of its anti-inflammatory actions are not yet fully understood. MATERIALS AND METHODS: In this study, we evaluated the anti-inflammatory effect of A. aspera ethanol extract (Aa-EE). To determine the mechanism by which Aa-EE dampens the inflammatory response, nitric oxide (NO) production and the mRNA expression levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) were examined by Griess assay and RT-PCR. Luciferase assays and immunoblotting were also conducted to examine how Aa-EE regulates the NF-κB pathway. RESULTS: Aa-EE reduced NO production up to 60% without any cytotoxicity. This extract was found to downregulate the mRNA expression levels of inflammatory genes. Aa-EE blocked NF-κB promoter activity induced by both TNF-α and adaptor molecule MyD88 (about 70% and 40%, respectively). Moreover, nuclear translocation of p65 and IκBα phosphorylation were also inhibited. Furthermore, Aa-EE inactivated two upstream signaling molecules, the Src and Syk kinases. In accordance with these data, the kinase activities of Src and Syk were decreased by 50% and 80%, respectively. The anti-inflammatory action of Aa-EE was also confirmed in a gastritis model. CONCLUSION: Our data suggest that Aa-EE targets NF-κB to exert its anti-inflammatory properties by suppressing Src and Syk. Therefore, our study raises the possibility that this extract can be developed as a novel natural anti-inflammatory remedy.


Assuntos
Achyranthes/química , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Quinase Syk/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Etanol , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR
16.
J Sports Sci Med ; 14(4): 740-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26664270

RESUMO

Poor physical fitness and low serum vitamin D are known to be modifiable risk factors for cognitive declines with normal aging. We investigated the association of physical fitness and serum vitamin D levels with global cognitive function in older adults. In this cross-sectional study, a total of 412 older Korean adults (108 men aged 74.4 ± 6.0 years and 304 women aged 73.1 ± 5.4 years) completed the Korean version of Mini-Mental State Examination (MMSE) to assess global cognitive performance and the senior fitness test to assess strength, flexibility, agility, and endurance domains of physical fitness. Body mass index, percent body fat, serum vitamin D, geriatric depression scale (GDS), level of education, smoking, and history of cardiovascular or cerebrovascular disease were also assessed as covariates. Age, sex, GDS, and body fatness were negatively associated with MMSE-based cognitive performance. Serum vitamin D and physical fitness were positively associated with MMSE-based cognitive performance. Multivariate linear regression showed that agility (partial R(2) = -0.184, p = 0.029) and endurance (partial R(2) = 0.191, p = 0.022) domains of physical fitness along with serum vitamin D (partial R(2) = 0.210, p = 0.012) were significant predictors for global cognitive performance after controlling for covariates (i.e., age, sex, education, GDS, body fatness, and comorbidity index). The current findings of the study suggest that promotion of physical fitness and vitamin D supplementation should be key components of interventions to prevent cognitive decline with normal aging. Key pointsCognitive declines are associated with normal aging as well as modifiable lifestyle risk factors, and there is an increasing need to identify the modifiable risk factors for the onset of cognitive declines and to provide evidence-based strategies for healthy and successful aging.In Korea, little is known about the relationships of physical fitness and serum vitamin D with cognitive function in older adults, and we determined the associations between a) serum vitamin D levels and cognitive function and b) physical fitness and cognitive function among community-dwelling elderly Koreans.The current findings of the study suggest that agility and endurance domains of physical fitness along with serum vitamin D were significant predictors for global cognitive performance after controlling for covariates.

17.
Artigo em Inglês | MEDLINE | ID: mdl-25878717

RESUMO

In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events.

18.
J Ethnopharmacol ; 168: 217-28, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839115

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS: Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION: Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Phyllanthus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Acético , Animais , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Etanol , Gastrite/induzido quimicamente , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lipopolissacarídeos , Metanol/química , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Solventes/química , Quinase Syk , Células U937 , Quinases da Família src/antagonistas & inibidores
19.
Artigo em Inglês | MEDLINE | ID: mdl-25918546

RESUMO

The Cordyceps species have been widely used for treating various cancer diseases. Although the Cordyceps species have been widely known as an alternative anticancer remedy, which compounds are responsible for their anticancer activity is not fully understood. In this study, therefore, we examined the anticancer activity of 5 isolated compounds derived from the butanol fraction (Cb-BF) of Cordyceps bassiana. For this purpose, several cancer cell lines such as C6 glioma, MDA-MB-231, and A549 cells were employed and details of anticancer mechanism were further investigated. Of 5 compounds isolated by activity-guided fractionation from BF of Cb-EE, KTH-13, and 4-isopropyl-2,6-bis(1-phenylethyl)phenol, Cb-BF was found to be the most potent antiproliferative inhibitor of C6 glioma and MDA-MB-231 cell growth. KTH-13 treatment increased DNA laddering, upregulated the level of Annexin V positive cells, and altered morphological changes of C6 glioma and MDA-MB-231 cells. In addition, KTH-13 increased the levels of caspase 3, caspase 7, and caspase 9 cleaved forms as well as the protein level of Bax but not Bcl-2. It was also found that the phosphorylation of AKT and p85/PI3K was also clearly reduced by KTH-13 exposure. Therefore, our results suggest KTH-13 can act as a potent antiproliferative and apoptosis-inducing component from Cordyceps bassiana, contributing to the anticancer activity of this mushroom.

20.
J Ethnopharmacol ; 159: 9-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446596

RESUMO

ETHNOPHARMACOLOGIC RELEVANCE: Persicaria chinensis L. (Polygonaceae) [also synonym as Polygonum chimnense L.] has been used as Chinese traditional medicine to treat ulcer, eczema, stomach ache, and various inflammatory skin diseases. Due to no molecular pharmacological evidence of this anti-inflammatory herbal plant, we investigated the inhibitory mechanisms and target proteins contributing to the anti-inflammatory responses of the plant by using its methanolic extract (Pc-ME). MATERIALS AND METHODS: We used lipopolysaccharide (LPS)-treated macrophages and a murine HCl/EtOH-induced gastritis model to evaluate the anti-inflammatory activity of Pc-ME. HPLC analysis was employed to identify potential active components of this extract. Molecular approaches including kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes were used to confirm target enzymes. RESULTS: Pc-ME inhibited LPS-induced nitric oxide and prostaglandin E2 release by RAW264.7 macrophages and ameliorated HCl/EtOH-induced gastric ulcers in mice. The nuclear translocation of NF-κB (p65 and p50) was suppressed by Pc-ME. Phosphorylation of Src and Syk, their kinase activities, and formation of the signaling complex of these proteins were repressed by Pc-ME. Phosphorylation of p85 and Akt induced by Src or Syk overexpression was blocked by Pc-ME. In the mouse gastritis model, orally administered Pc-ME suppressed the increased phosphorylation of IκBα, Αkt, Src, and Syk. Caffeic acid, kaempferol, and quercetin, identified as major anti-inflammatory components of Pc-ME by HPLC, displayed strong nitric oxide inhibitory activity in LPS-treated macrophages. CONCLUSION: Pc-ME might play a pivotal ethnopharmacologic role as an anti-inflammatory herbal medicine by targeting Syk and Src kinases and their downstream transcription factor NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Polygonum , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Etanol , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Células HEK293 , Humanos , Ácido Clorídrico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Macrófagos , Masculino , Metanol/química , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Solventes/química , Quinase Syk , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA