Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Genomics ; 43(9): 995-1001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950471

RESUMO

BACKGROUND: Tumor-treating fields (TTFields) is an emerging non-invasive cancer-treatment modality using alternating electric fields with low intensities and an intermediate range of frequency. TTFields affects an extensive range of charged and polarizable cellular factors known to be involved in cell division. However, it causes side-effects, such as DNA damage and apoptosis, in healthy cells. OBJECTIVE: To investigate whether thymidine can have an effect on the DNA damage and apoptosis, we arrested the cell cycle of human glioblastoma cells (U373) at G1/S phase by using thymidine and then exposed these cells to TTFields. METHODS: Cancer cell lines and normal cell (HaCaT) were arrested by thymidine double block method. Cells were seeded into the gap of between the insulated wires. The exposed in alternative electric fields at 120 kHz, 1.2 V/cm. They were counted the cell numbers and analyzed for cancer malignant such as colony formation, Annexin V/PI staining, γH2AX and RT-PCR. RESULTS: The colony-forming ability and DNA damage of the control cells without thymidine treatment were significantly decreased, and the expression levels of BRCA1, PCNA, CDC25C, and MAD2 were distinctly increased. Interestingly, however, cells treated with thymidine did not change the colony formation, apoptosis, DNA damage, or gene expression pattern. CONCLUSIONS: These results demonstrated that thymidine can inhibit the TTFields-caused DNA damage and apoptosis, suggesting that combining TTFields and conventional treatments, such as chemotherapy, may enhance prognosis and decrease side effects compared with those of TTFields or conventional treatments alone.


Assuntos
Apoptose/genética , Dano ao DNA/genética , Glioblastoma/terapia , Magnetoterapia , Apoptose/efeitos da radiação , Proteína BRCA1/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Mad2/genética , Antígeno Nuclear de Célula em Proliferação/genética , Timidina/farmacologia , Fosfatases cdc25/genética
2.
Cell Transplant ; 25(3): 593-607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26407027

RESUMO

Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell-derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32(-) GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10-T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4-L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios GABAérgicos/transplante , Células-Tronco Neurais/transplante , Neuralgia/etiologia , Neuralgia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular , Neurônios GABAérgicos/citologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Neuralgia/patologia , Neurogênese , Limiar da Dor , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA