Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479292

RESUMO

In semi-enclosed coastal brackish lakes, changes in dissolved oxygen in the bottom layer due to salinity stratification can affect the flux of phosphorus (P) at the sediment-water interface, resulting in short- and long-term water quality fluctuations in the water column. In this study, the physicochemical properties of the water layers and sediments at five sites in Saemangeum Lake were analyzed in spring and autumn for four years, and phosphorus release experiments from sediments were conducted for 20 days under oxic and anoxic conditions during the same period. Sediment total phosphorus (T-P) decreased in autumn compared to spring due to mineralization of organic bound phosphorus, which was the most dominant P fraction. This may be related to the increase in the ratio of PO4-P to T-P in bottom waters in autumn, when hypoxia was frequently observed. The difference in P fluxes between oxic and anoxic conditions indicated that during autumn, as compared to spring, the release of phosphorus could have a more immediate impact on the water column during the formation of hypoxia/anoxia. The main factors influencing changes in P fluxes from sediments were identified through redundancy analysis. Additionally, based on the results of multiple regression analysis, sediment TOC, sediment non-apatite phosphorus, porewater pH, and porewater PO4-P were determined to be the most significant factors affecting P fluxes from sediments, depending on the season or redox conditions. Recently, the increased influx of seawater into Saemangeum Lake has been shown to contribute to water quality improvements in the water column due to a strong dilution effect. However, the sediment environment has shifted towards a more reduced state, leading to increased P release under anoxic conditions. Therefore, for future water quality management within the lake, it is necessary to consistently address the recurring hypoxia and continuously monitor phosphorus dynamics.


Assuntos
Lagos , Poluentes Químicos da Água , Humanos , Lagos/química , Fósforo/análise , Oxigênio , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Hipóxia , China
2.
J Mech Behav Biomed Mater ; 84: 99-107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29754047

RESUMO

The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone.


Assuntos
Fêmur/metabolismo , Técnicas de Inativação de Genes , Fenômenos Mecânicos , Miosinas/deficiência , Miosinas/genética , Animais , Fenômenos Biomecânicos , Densidade Óssea/genética , Fêmur/fisiologia , Camundongos
3.
Clin Oral Investig ; 20(8): 2211-2220, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26832783

RESUMO

OBJECTIVES: The objective of the current study was to examine whether the nanoindentation parameters can assess the alteration of bone quality resulting from different degrees of bone remodeling between bone tissue ages around the dental implant interface with different treatments and healing periods. MATERIALS AND METHODS: Dental implants were placed in mandibles of six male dogs. Treatment groups included: resorbable blast media-treated titanium (Ti) implants, alumina-blasted zirconia implants (ATZ), alumina-blasted zirconia implants applied with demineralized bone matrix (ATZ-D), and alumina-blasted zirconia implants applied with rhBMP-2 (ATZ-B). Nanoindentation modulus (E), hardness (H), viscosity (η), and viscoelastic creep (Creep/P max) were measured for new and old bone tissues adjacent to the implants at 3 and 6 weeks of post-implantation. A total of 945 indentations were conducted for 32 implant systems. RESULTS: Significantly lower E, H, and η but higher Creep/P max were measured for new bone tissues than old bone tissues, independent of treatments at both healing periods (p < 0.001). All nanoindentation parameters were not significantly different between healing periods (p > 0.568). ATZ-D and ATZ-B implants had the stiffer slope of correlation between E and Creep/P max of the new bone tissue than Ti implant (p < 0.039). CONCLUSIONS: Current results indicated that, in addition to elastic modulus and plastic hardness, measurement of viscoelastic properties of bone tissue surrounding the implant can provide more detailed information to understand mechanical behavior of an implant system. CLINICAL RELEVANCE: Ability of energy absorption in the interfacial bone tissue can play a significant role in the long-term success of a dental implant system.


Assuntos
Remodelação Óssea/fisiologia , Implantação Dentária Endóssea , Implantes Dentários , Mandíbula/fisiologia , Cicatrização/fisiologia , Óxido de Alumínio , Animais , Proteína Morfogenética Óssea 2 , Planejamento de Prótese Dentária , Dentina , Cães , Módulo de Elasticidade , Dureza , Masculino , Mandíbula/cirurgia , Osseointegração/fisiologia , Propriedades de Superfície , Titânio , Viscosidade , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA