RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyaosan (XYS), a representative and classic traditional Chinese medicine (TCM) prescription with function of dispersing stagnated liver and strengthening spleen, has been used for thousands of years to treat depression. XYS' anti-depression effect has been demonstrated both clinically and experimentally; however, the material basis for this effect has yet to be elucidated. AIM OF THE STUDY: This study aimed to evaluate the impact and underlying action mechanism of XYS' antidepressant active component (Xiaoyaosan ethyl acetate fraction, XYSEF) against chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice. MATERIALS AND METHODS: First, we established a behavioral despair depression mouse model to preliminarily determine the effective antidepressant dose of XYSEF. Then, we created a CUMS mouse model and used various classic behavioral tests, including SPT, ST, NFST, and TST, to assess XYSEF's antidepressant properties. IGF-1 levels in mouse serum and hippocampus were quantified using ELISA. The average optical density of Nissl bodies in the mouse hippocampal CA3 region was determined utilizing toluidine blue staining. Brdu and DCX expression in the hippocampal dentate gyrus (DG) was assayed using the immunofluorescence method. IGF-1Rß, PI3K, p-PI3K, Akt, p-Akt, Caspase-3, and cleaved Caspase-3 protein levels in the hippocampus were determined with Western blot. RESULTS: The behavioral despair mouse model findings showed that 9.1 and 40 g/kg of XYSEF both significantly shortened the immobility time of mice, suggesting that the effective dose range was 9.1-40 g/kg. Compared to the CUMS mouse model, XYSEF at 20 and 40 g/kg markedly increased the sucrose preference percentage in the SPT and grooming time in the ST, shortened the immobility time in the TST and the feeding latency in the NSFT, and reversed the downregulated IGF-1 content in mouse serum and hippocampus. In addition, XYSEF amplified the average optical density of Nissl bodies in the hippocampal CA3 region, promoted Brdu and DCX expression in DG, and diminished IGF-1Rß, p-PI3K/PI3K, p-Akt/Akt, and cleaved Caspase-3/Caspase-3 protein levels in the hippocampi of CUMS mice. CONCLUSION: XYSEF acted as an antidepressant in mice exhibiting CUMS-induced depression-like behaviors, possibly by promoting hippocampal neurogenesis, reducing neuronal apoptosis, and inhibiting the over-activation of the IGF-1Rß/PI3K/Akt pathway.
Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Acetatos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Codonopsis pilosula (Franch.) Nannf., as a well-known homology plant of medicine and food, has the function of replenishing the Qi, strengthening the spleen and tonifying the lung, nourishing the blood and engendering the liquid in traditional Chinese medicine. Accumulating evidence has demonstrated that the C. pilosula polysaccharides (CPPs) are one of the major and representative pharmacologically active macromolecules and present multiple biological activities both in vitro and in vivo methods, such as immunomodulatory, antitumor, antioxidant, neuroprotective, antiviral, anti-inflammatory, anti-fatigue, hypoglycemic, anti-hypoxia, renoprotective, gastroprotective, hepatoprotective, and prebiotic. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction and purification, structure characterization, biological activities and the underlying mechanisms of action as well as toxicities of CPPs to support their therapeutic potentials and sanitarian functions. New valuable insights for the future researches regarding CPPs were also proposed in the fields of therapeutic agents and functional foods.
Assuntos
Codonopsis/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Suplementos Nutricionais/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Alimento Funcional/análise , Humanos , Medicina Tradicional Chinesa , Estrutura Molecular , Fitoterapia , Raízes de Plantas/químicaRESUMO
Juglans mandshurica Maxim., also known as "Manchurian walnut" (Chinese) and "Onigurumi" (Japanese), is a medicinal plant widely distributed in Western and Central Asia, especially in China. It has been traditionally used to treat cancer, gastric ulcers, diarrhea, dysentery, dermatosis, uterine prolapse, and leukopenia. To date, more than 400 constituents including quinones (e.g. naphthoquinones, anthraquinones, naphthalenones, tetralones), phenolics, flavonoids, triterpenoids, coumarins, lignans, phenylpropanoids, diarylheptanoids, and steroids, were isolated and structurally identified from different plant parts of J. mandshurica. Among them, quinones, phenolics, triterpenoids, and diarylheptanoids, as the major bioactive substances, have been extensively studied and displayed significant bioactivity. Previous studies have demonstrated that J. mandshurica and a few of its active components exhibit a wide range of pharmacologically important properties, such as antitumor, immunomodulatory, anti-inflammatory, neuroprotective, anti-diabetic, antiviral, antimicrobial, and anti-melanogenesis activities. However, many investigations on biological activities were mainly based on crude extracts of this plant, and the major bioactive ingredients responsible for these bioactivities have not been well identified. Further in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds, and more elaborate toxicity studies as well as clinical studies are needed to ensure safety and effectiveness of the plant for human use. Taken together, the present review will provide some specific useful suggestions guide to further investigations and applications of this plant in the preparation of medicines and functional foods.