Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 87(8): 631-641, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733438

RESUMO

Intestinal bacterial ß-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli ß-glucuronidase (EcGUS), the most abundant ß-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli ß-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli ß-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli ß-glucuronidase-catalyzed 4-nitrophenyl ß-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1: ), sanggenon C (2: ), kuwanon G (3: ), sanggenol A (4: ), and kuwanon C (5: ), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli ß-glucuronidase inhibitors could be well-docked into E. coli ß-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agents' noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli ß-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating ß-glucuronidase-mediated intestinal toxicity.


Assuntos
Glucuronidase , Morus , Escherichia coli , Simulação de Acoplamento Molecular , Casca de Planta
2.
Phytomedicine ; 77: 153287, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32739573

RESUMO

BACKGROUND: Styrax, one of the most famous folk medicines, has been frequently used for the treatment of cardiovascular diseases and skin problems in Asia and Africa. It is unclear whether Styrax or Styrax-related herbal medicines may trigger clinically relevant herb-drug interactions. PURPOSE: This study was carried out to investigate the inhibitory effects of Styrax on human cytochrome P450 enzymes (CYPs) and to clarify whether this herb may modulate the pharmacokinetic behavior of the CYP-substrate drug warfarin when co-administered. STUDY DESIGN: The inhibitory effects of Styrax on CYPs were assayed in human liver microsomes (HLM), while the pharmacokinetic interactions between Styrax and warfarin were investigated in rats. The bioactive constituents in Styrax with strong CYP3A inhibitory activity were identified and their inhibitory mechanisms were carefully investigated. METHODS: The inhibitory effects of Styrax on human CYPs were assayed in vitro, while the pharmacokinetic interactions between Styrax and warfarin were studied in rats. Fingerprinting analysis of Styrax coupled with LC-TOF-MS/MS profiling and CYP inhibition assays were used to identify the constituents with strong CYP3A inhibitory activity. The inhibitory mechanism of oleanonic acid (the most potent CYP3A inhibitor occurring in Styrax) against CYP3A4 was investigated by a panel of inhibition kinetics analyses and in silico analysis. RESULTS: In vitro assays demonstrated that Styrax extract strongly inhibited human CYP3A and moderately inhibited six other tested human CYPs, as well as potently inhibited warfarin 10-hydroxylation in liver microsomes from both humans and rats. In vivo assays demonstrated that compared with warfarin given individually in rats, Styrax (100 mg/kg) significantly prolonged the plasma half-life of warfarin by 2.3-fold and increased the AUC(0-inf) of warfarin by 2.7-fold when this herb was co-administrated with warfarin (2 mg/kg) in rats. Two LC fractions were found with strong CYP3A inhibitory activity and the major constituents in these fractions were characterized by LC-TOF-MS/MS. Five pentacyclic triterpenoid acids (including epibetulinic acid, betulinic acid, betulonic acid, oleanonic acid and maslinic acid) present in Styrax were potent CYP3A inhibitors, and oleanonic acid was a competitive inhibitor against CYP3A-mediated testosterone 6ß-hydroxylation. CONCLUSION: Styrax and the pentacyclic triterpenoid acids occurring in this herb strongly modulate the pharmacokinetic behavior of warfarin via inhibition of CYP3A.


Assuntos
Interações Ervas-Drogas , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/farmacocinética , Styrax/química , Varfarina/farmacocinética , Animais , Anticoagulantes/farmacocinética , Cromatografia de Fase Reversa , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidroxilação/efeitos dos fármacos , Masculino , Microssomos Hepáticos/metabolismo , Triterpenos Pentacíclicos/análise , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Plantas Medicinais/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Triterpenos/análise , Triterpenos/farmacologia , Ácido Betulínico
3.
Int J Biol Macromol ; 145: 620-633, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31883893

RESUMO

Herbal medicines are frequently used for the prevention and treatment of obesity and obesity-related disorders. Our preliminary screening showed that St. John's Wort (SJW) displayed potent inhibition on pancreatic lipase (PL), a key hydrolase responsible for lipid digestion and absorption in mammals. Herein, the inhibition potentials and inhibitory mechanism of SJW extract and its major constituents on PL were fully investigated by a set of in vitro and in silico studies. The results clearly demonstrated that the naphthodianthrones, biflavones and most of flavonoids in SJW displayed strong to moderate inhibition on PL. Among all tested natural compounds, two naphthodianthrones (hypericin and pseudohypericin) and one biflavone (I3,II8-biapigenin) isolated from SJW exhibited potent PL inhibition activity, with the IC50 values of <1 µM. Inhibition kinetics analyses showed that hypericin, pseudohypericin and I3,II8-biapigenin inhibited PL via a mixed manner, while molecular dynamics simulations revealed that three newly identified PL inhibitors could bind on PL at both the catalytic cavity and the interface between colipase and the C-terminal domain of PL. Collectively, our findings suggested that part of major constituents in SJW displayed potent PL inhibition activities, which could be used as lead compounds for the development of novel PL inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Hypericum/química , Lipase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Sítios de Ligação , Domínio Catalítico , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pâncreas/enzimologia , Extratos Vegetais/química , Relação Estrutura-Atividade
4.
Chin J Nat Med ; 17(11): 858-870, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31831132

RESUMO

Psoraleae Fructus (the dried fruits of Psoralea corylifolia), one of the most frequently used Chinese herbs in Asian countries, has a variety of biological activities. In clinical settings, Psoraleae Fructus or Psoraleae Fructus-related herbal medicines frequently have been used in combination with a number of therapeutic drugs for the treatment of various human diseases, such as leukoderma, rheumatism and dysentery. The use of Psoraleae Fructus in combination with drugs has aroused concern of the potential risks of herb-drug interactions (HDI) or herb-endobiotic interactions (HEI). This article reviews the interactions between human drug-metabolizing enzymes and the constituents of Psoraleae Fructus; the major constituents in Psoraleae Fructus, along with their chemical structures and metabolic pathways are summarized, and the inhibitory and inductive effects of the constituents in Psoraleae Fructus on human drug-metabolizing enzymes (DMEs), including target enzyme(s), its modulatory potency, and mechanisms of action are presented. Collectively, this review summarizes current knowledge of the interactions between the Chinese herb Psoraleae Fructus and therapeutic drugs in an effort to facilitate its rational use in clinical settings, and especially to avoid the potential risks of HDI or HEI through human DMEs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Glucuronosiltransferase/metabolismo , Interações Ervas-Drogas , Psoralea/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA