Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Acta Pharmacol Sin ; 43(12): 3080-3095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114271

RESUMO

Traditional medicine has provided a basis for health care and disease treatment to Chinese people for millennia, and herbal medicines are regulated as drug products in China. Chinese herbal medicines have two features. They normally possess very complex chemical composition. This makes the identification of the constituents that are together responsible for the therapeutic action of an herbal medicine challenging, because how to select compounds from an herbal medicine for pharmacodynamic study has been a big hurdle in such identification efforts. To this end, a multi-compound pharmacokinetic approach was established to identify potentially important compounds (bioavailable at the action loci with significant exposure levels after dosing an herbal medicine) and to characterize their pharmacokinetics and disposition. Another feature of Chinese herbal medicines is their typical use as or in combination therapies. Coadministration of complex natural products and conventional synthetic drugs is prevalent worldwide, even though it remains very controversial. Natural product-drug interactions have raised wide concerns about reduced drug efficacy or safety. However, growing evidence shows that incorporating Chinese herbal medicines into synthetic drug-based therapies delivers benefits in the treatment of many multifactorial diseases. To address this issue, a drug-combination pharmacokinetic approach was established to assess drug-drug interaction potential of herbal medicines and degree of pharmacokinetic compatibility for multi-herb combination and herbal medicine-synthetic drug combination therapies. In this review we describe the methodology, techniques, requirements, and applications of multi-compound and drug-combination pharmacokinetic research on Chinese herbal medicines and to discuss further development for these two types of pharmacokinetic research.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Plantas Medicinais/química , Medicina Tradicional Chinesa , Combinação de Medicamentos , Interações Medicamentosas
3.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3409-3424, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850791

RESUMO

The Chinese medicinal herb Mahuang is herbaceous stem of Ephedra sinica, E. intermedia, or E. equisetina(Family, Ephedraceae). In China, Mahuang has been used, all the way over a millennium, as a key component herb of many herbal medicines for management of epidemics of acute respiratory illness and is also used in officially recommended herbal medicines for COVID-19. Mahuang is the first-line medicinal herb for cold and wheezing and also an effective diuretic herb for edema. However, Mahuang can also exert significant adverse effects. The key to safety and effectiveness is rational and precise use of the herb. In this review article, we comprehensively summarize chemical composition of Mahuang and associated differences in pharmacognosy, pharmacodynamics and pharmacokinetics of Mahuang compounds, along with the adverse effects of Mahuang compounds and products. Based on full understanding of how Mahuang is used in Chinese traditional medicine, systematic research on Mahuang in line with contemporary standards of pharmaceutical sciences will facilitate promoting Chinese herbal medicines to become more efficient in management of epidemic illnesses, such as COVID-19. To this end, we recommend research on Mahuang of two aspects, i.e., pharmacological investigation for its multicompound-involved therapeutic effects and toxicological investigation for clinical manifestation of the adverse effects, chemicals responsible for the adverse effects, and conditions for safe use of the herb and the herb-containing medicines.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Ephedra sinica , Ephedra , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ephedra sinica/química , Efedrina/química , Humanos , Plantas
4.
Front Pharmacol ; 13: 911982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620286

RESUMO

Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350-450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.

5.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33931765

RESUMO

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacocinética , Compostos Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Disponibilidade Biológica , Biotransformação , Cápsulas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Glycyrrhiza/efeitos adversos , Células HEK293 , Humanos , Síndrome de Liddle/induzido quimicamente , Síndrome de Liddle/enzimologia , Masculino , Segurança do Paciente , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/efeitos adversos , Ratos Sprague-Dawley , Medição de Risco
6.
Acta Pharmacol Sin ; 39(12): 1935-1946, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30054600

RESUMO

Terpene lactones are a class of bioactive constituents of standardized preparations of Ginkgo biloba leaf extract, extensively used as add-on therapies in patients with ischemic cardiovascular and cerebrovascular diseases. This investigation evaluated human pharmacokinetics of ginkgo terpene lactones and impact of their carboxylation in blood. Human subjects received oral YinXing-TongZhi tablet or intravenous ShuXueNing, two standardized ginkgo preparations. Their plasma protein-binding and platelet-activating factor antagonistic activity were assessed in vitro. Their carboxylation was assessed in phosphate-buffered saline (pH 7.4) and in human plasma. After dosing YinXing-TongZhi tablet, ginkgolides A and B and bilobalide exhibited significantly higher systemic exposure levels than ginkgolides C and J; after dosing ShuXueNing, ginkgolides A, B, C, and J exhibited high exposure levels. The compounds' unbound fractions in plasma were 45-92%. Apparent oral bioavailability of ginkgolides A and B was mostly >100%, while that of ginkgolides C and J was 6-15%. Bilobalide's bioavailability was probably high but lower than that of ginkgolides A/B. Terminal half-lives of ginkgolides A, B, and C (4-7 h) after dosing ShuXueNing were shorter than their respective values (6-13 h) after dosing YinXing-TongZhi tablet. Half-life of bilobalide after dosing the tablet was around 5 h. Terpene lactones were roughly evenly distributed in various body fluids and tissues; glomerular-filtration-based renal excretion was the predominant elimination route for the ginkgolides and a major route for bilobalide. Terpene lactones circulated as trilactones and monocarboxylates. Carboxylation reduced platelet-activating factor antagonistic activity of ginkgolides A, B, and C. Ginkgolide J, bilobalide, and ginkgo flavonoids exhibited no such bioactivity. Collectively, differences in terpene lactones' exposure between the two preparations and influence of their carboxylation in blood should be considered in investigating the relative contributions of terpene lactones to ginkgo preparations' therapeutic effects. The results here will inform rational clinical use of ginkgo preparations.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Ginkgolídeos/farmacocinética , Lactonas/farmacocinética , Fator de Ativação de Plaquetas/antagonistas & inibidores , Adulto , Animais , Fenômenos Bioquímicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Feminino , Ginkgo biloba/química , Ginkgolídeos/sangue , Ginkgolídeos/química , Ginkgolídeos/urina , Células HEK293 , Humanos , Lactonas/sangue , Lactonas/química , Lactonas/urina , Masculino , Coelhos , Adulto Jovem
7.
Acta Pharmacol Sin ; 37(4): 530-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26838074

RESUMO

AIM: Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. METHODS: Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. RESULTS: A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. CONCLUSION: Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Glucosídeos/farmacocinética , Glicosídeos/farmacocinética , Monoterpenos/farmacocinética , Paeonia/química , Adulto , Animais , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Feminino , Glucosídeos/sangue , Glucosídeos/urina , Glicosídeos/sangue , Glicosídeos/urina , Humanos , Masculino , Monoterpenos/sangue , Monoterpenos/urina , Raízes de Plantas/química , Ligação Proteica , Ratos Sprague-Dawley , Adulto Jovem
8.
Acta Pharmacol Sin ; 36(5): 627-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25891082

RESUMO

AIM: Tanshinol is an important catechol in the antianginal herb Salvia miltiorrhiza roots (Danshen). This study aimed to characterize tanshinol methylation. METHODS: Metabolites of tanshinol were analyzed by liquid chromatography/mass spectrometry. Metabolism was assessed in vitro with rat and human enzymes. The major metabolites were synthesized for studying their interactions with drug metabolizing enzymes and transporters and their vasodilatory properties. Dose-related tanshinol methylation and its influences on tanshinol pharmacokinetics were also studied in rats. RESULTS: Methylation, preferentially in the 3-hydroxyl group, was the major metabolic pathway of tanshinol. In rats, tanshinol also underwent considerable 3-O-sulfation, which appeared to be poor in human liver. These metabolites were mainly eliminated via renal excretion, which involved tubular secretion mainly by organic anion transporter (OAT) 1. The methylated metabolites had no vasodilatory activity. Entacapone-impaired methylation did not considerably increase systemic exposure to tanshinol in rats. The saturation of tanshinol methylation in rat liver could be predicted from the Michaelis constant of tanshinol for catechol-O-methyltransferase (COMT). Tanshinol had low affinity for human COMT and OATs; its methylated metabolites also had low affinity for the transporters. Tanshinol and its major human metabolite (3-O-methyltanshinol) exhibited negligible inhibitory activities against human cytochrome P450 enzymes, organic anion transporting polypeptides 1B1/1B3, multidrug resistance protein 1, multidrug resistance-associated protein 2, and breast cancer resistance protein. CONCLUSION: Tanshinol is mainly metabolized via methylation. Tanshinol and its major human metabolite have low potential for pharmacokinetic interactions with synthetic antianginal agents. This study will help define the risk of hyperhomocysteinemia related to tanshinol methylation.


Assuntos
Ácidos Cafeicos/farmacocinética , Fármacos Cardiovasculares/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Fígado/enzimologia , Salvia miltiorrhiza/química , Administração Oral , Animais , Biotransformação , Ácidos Cafeicos/administração & dosagem , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/toxicidade , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/toxicidade , Catecol O-Metiltransferase/metabolismo , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/toxicidade , Interações Ervas-Drogas , Humanos , Injeções Intravenosas , Túbulos Renais/metabolismo , Masculino , Espectrometria de Massas , Proteínas de Membrana Transportadoras/metabolismo , Metilação , Microssomos Hepáticos/enzimologia , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Fitoterapia , Raízes de Plantas , Plantas Medicinais , Ratos Sprague-Dawley , Eliminação Renal , Sulfatos/metabolismo
9.
Nat Prod Commun ; 6(8): 1055-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21922897

RESUMO

The structures of two new sesquiterpene lactones, 11,13beta-dihydroixerin Z (1) and Ixerin Z2 (2) isolated from Ixeris sonchifolia were determined to be 3-hydroxy-1(10),3-guaiadiene-12,6-olide-2-one-3-O-beta-D-glucopyranoside and 1(10),3,11 (13)-guaiatriene-12,6-olide-2-one-3-O-[6'-(4"-hydroxybenzyl lactyl)]-beta-D-glucopyranoside, respectively on the basis of detailed spectral analysis.


Assuntos
Asteraceae/química , Glucosídeos/química , Lactonas/química , Sesquiterpenos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA