RESUMO
An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing the SARS-CoV-2 S glycoprotein to screen a botanical drug library containing 1037 botanical drugs to identify agents that prevent SARS-CoV-2 entry into the cell. Our study identified four hits, including angeloylgomisin O, schisandrin B, procyanidin, and oleanonic acid, as effective SARS-CoV-2 S pv entry inhibitors in the micromolar range. A mechanistic study revealed that these four agents inhibited SARS-CoV-2 S pv entry by blocking spike (S) protein-mediated membrane fusion. Furthermore, angeloylgomisin O and schisandrin B inhibited authentic SARS-CoV-2 with a high selective index (SI; 50% cytotoxic concentration/50% inhibition concentration). Our drug combination studies performed in cellular antiviral assays revealed that angeloylgomisin O has synergistic effects in combination with remdesivir, a drug widely used to treat SARS-CoV-2-mediated infections. We also showed that two hits could inhibit the newly emerged alpha (B.1.1.7) and beta (B.1.351) variants. Our findings collectively indicate that angeloylgomisin O and schisandrin B could inhibit SARS-CoV-2 efficiently, thereby making them potential therapeutic agents to treat the coronavirus disease of 2019.
Assuntos
Antivirais/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Células CACO-2 , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Descoberta de Drogas , Células HEK293 , Humanos , Células Vero , Tratamento Farmacológico da COVID-19RESUMO
Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Here, high-throughput screening of an FDA-approved drug library was performed against LASV entry by using pseudotype virus bearing LASV envelope glycoprotein (GPC). Two hit compounds, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both compounds inhibited LASV entry by blocking low-pH-induced membrane fusion. Accordingly, lacidipine showed virucidal effects on the pseudotype virus of LASV. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine. Furthermore, lacidipine showed antiviral activity against LASV, the closely related Mopeia virus (MOPV), and the New World arenavirus Guanarito virus (GTOV). Drug-resistant variants indicated that V36M in the ectodomain of the SSP mutant and V436A in the transmembrane domain of the GP2 mutant conferred GTOV resistance to lacidipine, suggesting the interface between SSP and GP2 is the target of lacidipine. This study shows that lacidipine is a candidate for LASV therapy, reinforcing the notion that the SSP-GP2 interface provides an entry-targeted platform for arenavirus inhibitor design.IMPORTANCE Currently, there is no approved therapy to treat Lassa fever; therefore, repurposing of approved drugs will accelerate the development of a therapeutic stratagem. In this study, we screened an FDA-approved library of drugs and identified two compounds, lacidipine and phenothrin, which inhibited Lassa virus entry by blocking low-pH-induced membrane fusion. Additionally, both compounds extended their inhibition against the entry of Guanarito virus, and the viral targets were identified as the SSP-GP2 interface.
Assuntos
Antivirais/farmacologia , Di-Hidropiridinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Vírus Lassa/efeitos dos fármacos , Piretrinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Arenaviridae/efeitos dos fármacos , Arenavirus do Novo Mundo/efeitos dos fármacos , Análise Mutacional de DNA , Farmacorresistência Viral , Vírus Lassa/fisiologiaRESUMO
Danshen was able to reduce the risk of the patients with coronary heart disease (CHD), but the mechanism is still widely unknown. Biochemical indices (lipid profile, markers of renal and liver function, and homocysteine (Hcy)) are closely associated with CHD risk. We aimed to investigate whether the medicine reduces CHD risk by improving these biochemical indices. The patients received 10 Danshen pills (27 mg/pill) in Dashen group, while the control patients received placebo pills, three times daily. The duration of follow-up was three months. The serum biochemical indices were measured, including lipid profiles (LDL cholesterol (LDL-C), HDL-C, total cholesterol (TC), triglycerides (TG), apolipoprotein (Apo) A, ApoB, ApoE, and lipoprotein (a) (Lp(a))); markers of liver function (gamma-glutamyl transpeptidase (GGT), total bilirubin (TBil), indirect bilirubin (IBil), and direct bilirubin (DBil)); marker of renal function (uric acid (UA)) and Hcy. After three-month follow-up, Danshen treatment reduced the levels of TG, TC, LDL-C, Lp(a), GGT, DBil, UA, and Hcy (P < 0.05). In contrast, the treatment increased the levels of HDL-C, ApoA, ApoB, ApoE, TBil, and IBil (P < 0.05). Conclusion. Danshen can reduce the CHD risk by improving the biochemical indices of CHD patients.
RESUMO
PURPOSE: Waldenstrom macroglobulinemia is a lymphoplasmacytic lymphoma characterized by widespread involvement of the bone marrow. Despite different options of therapy, Waldenstrom macroglobulinemia is still incurable. Src tyrosine kinase has been shown to play a central role in the regulation of a variety of biological processes, such as cell proliferation, migration, adhesion, and survival in solid tumors. We sought to determine whether the protein tyrosine kinase Src regulates adhesion, migration, and survival in Waldenstrom macroglobulinemia. EXPERIMENTAL DESIGN: We tested the expression of Src tyrosine kinase in Waldenstrom macroglobulinemia and normal cells, and the effect of the specific Src inhibitor AZD0530 on the adhesion, migration, cell cycle, and survival of a Waldenstrom macroglobulinemia cell line and patient samples. Moreover, we tested the effect of AZD0530 on cytoskeletal and cell cycle signaling in Waldenstrom macroglobulinemia. RESULTS: We show that Src is overexpressed in Waldenstrom macroglobulinemia cells compared with control B cells, and that the use of the Src inhibitor AZD0530 led to significant inhibition of adhesion, migration, and cytoskeletal signaling induced by SDF1. Moreover, inhibition of Src activity induced G(1) cell cycle arrest; however, it had minimal effect on survival of Waldenstrom macroglobulinemia cells, and no significant effect on survival of normal cells. CONCLUSIONS: Taken together, these results delineate the role of Src kinase activity in Waldenstrom macroglobulinemia and provide the framework for future clinical trials using Src inhibitors in combination with other drugs to improve the outcome of patients with Waldenstrom macroglobulinemia.
Assuntos
Quimiotaxia , Proteína Oncogênica pp60(v-src)/fisiologia , Macroglobulinemia de Waldenstrom/patologia , Benzodioxóis/farmacologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Citotoxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Macroglobulinemia de Waldenstrom/metabolismoRESUMO
PURPOSE: Resveratrol (3,4',5-tri-hydroxy-trans-stilbene) is an antioxidant constituent of a wide variety of plant species including grapes. It has gained considerable attention because of its anticancer properties, as shown in solid and hematologic malignancies. Whether resveratrol could inhibit proliferation or induce cytotoxicity in Waldenström's macroglobulinemia (WM) was investigated. EXPERIMENTAL DESIGN: We studied resveratrol-induced inhibition of proliferation and induction of cytotoxicity in WM cell lines, WM primary tumor cells, IgM-secreting cells, and peripheral blood mononuclear cells. The mechanisms of action and different signaling pathways involved were studied using Western blot and gene expression profile analysis. Resveratrol activity was also evaluated in the bone marrow microenvironment. We finally investigated whether or not resveratrol could have any synergistic effect if used in combination with other drugs widely used in the treatment of WM. RESULTS: A schematic image illustrating the location and expression of the aurora kinases A, B, and C during mitosis. Resveratrol inhibited proliferation and induced cytotoxicity against WM cells, IgM-secreting cells, as well as primary WM cells, without affecting peripheral blood mononuclear cells; down-regulated Akt, extracellular signal-regulated kinase mitogen-activated protein kinases, and Wnt signaling pathways, as well as Akt activity; induced cell cycle arrest and apoptosis; and triggered c-Jun-NH(2)-terminal-kinase activation, followed by the activation of intrinsic and extrinsic caspase pathways. Lastly, adherence to bone marrow stromal cells did not confer protection to WM cells against resveratrol-induced cytotoxicity. Furthermore, resveratrol showed synergistic cytotoxicity when combined with dexamethasone, fludarabine, and bortezomib. CONCLUSION: Our data show that resveratrol has significant antitumor activity in WM, providing the framework for clinical trials in this disease.