Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171686, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485026

RESUMO

Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.


Assuntos
Methylococcaceae , Petróleo , Campos de Petróleo e Gás , Metano , Solo , Bioprospecção , Microbiologia do Solo , Filogenia , Oxirredução
2.
Sci Total Environ ; 648: 962-972, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144764

RESUMO

This work investigated the potential of microbial communities native to an estuarine environment to biodegrade enrofloxacin (ENR) and oxytetracycline (OXY). Sediments collected from two sites in the Douro river estuary (Porto, Portugal) were used as inocula for the biodegradation experiments. Experiments were carried out for one month, during which ENR and OXY (1 mg L-1) were supplemented individually or in mixture to the cultures at 10-day intervals. Acetate (400 mg L-1) was added to the cultures every 3 days to support microbial growth. A series of experimental controls were established in parallel to determine the influence of abiotic breakdown and adsorption in the removal of the antibiotics. Removal of antibiotics was followed by measuring their concentration in the culture medium. Additionally, next-generation sequencing of the 16S rRNA gene amplicon was employed to understand how microbial communities responded to the presence of the antibiotics. At the end of the biodegradation experiments, microbial cultures derived from the two estuarine sediments were able to remove up to 98% of ENR and over 95% of OXY. The mixture of antibiotics did not affect their removal. ENR was removed mainly by biodegradation, while abiotic mechanisms were found to have a higher influence in the removal of OXY. Both antibiotics adsorbed at different extents to the estuarine sediments used as inocula but exhibited a higher affinity to the sediment with finer texture and higher organic matter content. The presence of ENR and OXY in the culture media influenced the dynamics of the microbial communities, resulting in a lower microbial diversity and richness and in the predominance of bacterial species belonging to the phylum Proteobacteria. Therefore, microbial communities native from estuarine environments have potential to respond to the contamination caused by antibiotics and may be considered for the recovering of impacted environments through bioremediation.


Assuntos
Bactérias/metabolismo , Fluoroquinolonas/metabolismo , Microbiota , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/metabolismo , Antibacterianos/metabolismo , Bactérias/classificação , Biodegradação Ambiental , Enrofloxacina , Estuários , Sedimentos Geológicos/microbiologia , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA