Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 201: 107858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390694

RESUMO

Salt stress is considered one of the major abiotic stresses that impair agricultural production, while boron (B) is indispensable for plant cell composition and has also been found to alleviate salt stress. However, the regulatory mechanism of how B improves salt resistance via cell wall modification remains unknown. The present study primarily focused on investigating the mechanisms of B-mediated alleviation of salt stress in terms of osmotic substances, cell wall structure and components and ion homeostasis. The results showed that salt stress hindered plant biomass and root growth in cotton. Moreover, salt stress disrupted the morphology of the root cell wall as evidenced by Transmission Electron Microscope (TEM) analysis. The presence of B effectively alleviated these adverse effects, promoting the accumulation of proline, soluble protein, and soluble sugar, while reducing the content of Na+ and Cl- and augmenting the content of K+ and Ca2+ in the roots. Furthermore, X-ray diffraction (XRD) analysis demonstrated a decline in the crystallinity of roots cellulose. Boron supply also reduced the contents of chelated pectin and alkali-soluble pectin. Fourier-transform infrared spectroscopy (FTIR) analysis further affirmed that exogenous B led to a decline in cellulose accumulation. In conclusion, B offered a promising strategy for mitigating the adverse impact of salt stress and enhancing plant growth by countering osmotic and ionic stresses and modifying root cell wall components. This study may provide invaluable insights into the role of B in ameliorating the effects of salt stress on plants, which could have implications for sustainable agriculture.


Assuntos
Boro , Estresse Salino , Boro/farmacologia , Boro/metabolismo , Parede Celular/metabolismo , Íons/metabolismo , Celulose/metabolismo , Pectinas/metabolismo , Homeostase , Raízes de Plantas/metabolismo
2.
NanoImpact ; 27: 100415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35981643

RESUMO

Currently, l-aspartate nano­calcium (Ca(L-asp)-NPs) has been sued as a calcium supplement for humans, but its effects on plants are not well elucidated. This study aimed to investigate the effect of exogenous Ca(L-asp)-NPs on the growth of rapeseed (Brassica napus L.) for the first time. Different concentrations (0, 50, 100, 150, and 200 mg L-1) of Ca(L-asp)-NPs and 1.18 g L-1 Ca(NO3)2 were used in the nutrient solution. The results indicated that Ca2+ released from Ca(L-asp)-NPs were absorbed by the roots, and had a significant effect on plant height, root length, biomass accumulation, and root structure formation, especially on the growth and development of coarse roots at 100 mg L-1 Ca(L-asp)-NPs. Calcium (Ca) accumulation, Ca-pectinate, Ca-phosphate and Ca­carbonate, and Ca-oxalate in plant roots and leaves were positively linked with Ca(L-asp)-NPs concentration. For cell wall, Ca(L-asp)-NPs treatment increased the content of pectin, and the activity of cell wall degrading enzymes in roots, such as pectin methyl-esterase (PME), cellulose enzyme (CE), polygalacturonase (PG), and ß-galactosidase (ß-Gal). For cell membrane osmotic regulation, Ca(L-asp)-NPs promoted the accumulation of soluble sugar and soluble protein. This finding suggests that 100 mg L-1 Ca(L-asp)-NPs had the best growth-promoting effect on rapeseed. This study provides a valuable reference for exogenous Ca(L-asp)-NPs as new nano Ca supplements for plant growth.


Assuntos
Brassica napus , Brassica rapa , Ácido Aspártico/análise , Parede Celular , Humanos , Pectinas/análise , Raízes de Plantas/química
3.
J Hazard Mater ; 401: 123388, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653794

RESUMO

Boron (B) is indispensable for plant growth and has been reported in the mitigation of aluminum (Al) toxicity in different plants. This study focused on the efficacy of B in reducing Al toxicity to trifoliate orange seedlings in a hydroponic experiment. Boron supply had a positive effect on root length and plant growth-related parameters and attenuated Al-induced inhibition of plasma membrane H+-ATPase activity. X-ray photoelectron spectroscopy (XPS) in conjunction with scanning electron microscope-energy dispersive x-ray spectrometer (SEM-EDS) revealed that B reduced Al accumulation in root cell wall, especially on pectin fractions (alkali-soluble pectin), accompanied by suppressing pectin synthesis, pectin methylesterase (PME) activity and PME expression. Furthermore, B application inhibited NRAT1 expression while increased ALS1 expression, indicating restraining Al transport from external cells to cytoplasm and accelerating accelerating vacuolar sequestration. The results were further demonstrated by transmission electron microscope-energy dispersive x-ray spectrometer (TEM-EDS) analysis. Taken together, our results indicated that B mainly promoted the efflux of H+ by regulating the plasma membrane H+-ATPase activity, and reduced the demethylation of pectin to weaken Al binding to carboxyl. More importantly, B alleviated some of the toxic effects of Al by compartmentalizing Al into vacuoles and decreasing the deposition of Al in cytoplasm.


Assuntos
Alumínio , Boro , Álcalis , Alumínio/toxicidade , Boro/toxicidade , Parede Celular , Citoplasma , Pectinas , Raízes de Plantas
4.
Ecotoxicol Environ Saf ; 165: 202-210, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196002

RESUMO

Aluminum toxicity limits the plant growth by inducing inhibition of root elongation. Although several mechanisms have been proposed regarding the phytotoxic effects of aluminum on inhibition of root elongation; the primary causes of aluminum induced root inhibition and its mitigation by boron (B) are still elusive. The present study was carried out to explore the mechanisms of B induced mitigation of aluminum toxicity and to investigate the changes in well wall structure under aluminum toxicity coupled with the techniques of confocal laser microscope, lumogallion and transmission electron microscope. The results revealed that aluminum toxicity severely hampered the root elongation and plant biomass. Moreover, alteration in subcellular structure were observed under aluminum toxicity, however, such negative effects were further exacerbated with B deficiency. Aluminum toxicity indicated disorganized distribution of HG (homogalacturonan) epitopes with higher accumulation of apoplastic aluminum. Nevertheless, B supply improved root elongation, and reduced the aluminum uptake. Taken together, it is concluded that B application can reduce aluminum toxicity and improve root elongation by decreasing Al3+ accumulation to cell wall, alteration in the cell wall structure and reducing the distribution of HG epitopes in the roots of trifoliate (Poncirus trifoliate) orange.


Assuntos
Alumínio/química , Boro/farmacologia , Parede Celular/efeitos dos fármacos , Epitopos/química , Raízes de Plantas/efeitos dos fármacos , Poncirus/efeitos dos fármacos , Benzenossulfonatos/química , Parede Celular/ultraestrutura , Microscopia Confocal , Pectinas/química , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Ecotoxicol Environ Saf ; 161: 290-295, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890430

RESUMO

Biochar has a significant effect on alleviating acid soil aluminum (Al) toxicity and promoting plant growth. The potential effects of aged biochar (long-term applied biochar in soil) on soil amendment have attracted increasing attention. Here, the effects of biochar and aged biochar were evaluated through a pot experiment. The seedlings of cabbage were grown in red soil for 45 days with the following four biochar treatments: CK (0% biochar), PB (2% primary biochar), WB (2% water washed biochar) and AB (2% acidulated biochar) to investigate the potential effect of biochar and aged biochar on mitigating red soil aluminum toxicity and improving cabbage growth. Results indicated that biochar increased the content of available potassium, available phosphorus, and organic carbon in red soil and improved cabbage growth. Biochar not only increased the pH of red soil by 0.42 units, but also reduced exchangeable acid and exchangeable hydrogen (H+) content by 52.74% and 2.86% respectively compared with CK. Additionally, the amount of the total active aluminum and exchangeable Al3+ were reduced by 26.74% and 66.09%, respectively. However, water washed biochar and acidulated biochar decreased the effect of relieving the acidity substantially as compared to the primary biochar. Moreover, acidulated biochar treatment increased the Al3+ content by 8.07% and trend of increasing soil available nutrients was declined with aged biochar. Taken together, it is concluded that biochar can reduce aluminum toxicity by increasing pH of acid soil and available nutrients, thus improves cabbage growth. However, aged biochar had a negative effect on aluminum toxicity reduction and acidic soil improvement, thus inhibited plant growth.


Assuntos
Alumínio/análise , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Poluentes do Solo/análise , Solo/química , Concentração de Íons de Hidrogênio , Fósforo/análise
6.
Environ Pollut ; 240: 764-774, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778812

RESUMO

Aluminum (Al) phytotoxicity is a major limitation in the production of crops in the soils with pH ≤ 5. Boron (B) is indispensable nutrient for the development of higher plants and B role has been reported in the alleviation Al toxicity. Trifoliate orange rootstock was grown in two B and two Al concentrations. The results of the present study showed that Al toxicity adversely inhibited root elongation and exhibited higher oxidative stress in terms of H2O2 and O2- under B-deficiency. Additionally, the X-ray diffraction (XRD) analysis confirmed the increase of the cellulose crystallinity in the cell wall (CW). Al-induced remarkable variations in the CW components were prominent in terms of alkali-soluble pectin, 2-keto-3-deoxyoctonic acid (KDO) and the degree of methyl-esterification (DME) of pectin. Interesting, B supply reduced the pectin (alkali-soluble) under Al toxicity. Moreover, the results of FTIR (Fourier transform infrared spectroscopy) and 13C-NMR (13C nuclear magnetic resonance) spectra revealed the decrease of carboxyl groups and cellulose by B application during Al exposure. Furthermore, B supply tended to decrease the Al uptake, CW thickness and callose formation. The study concluded that B could mitigate Al phytotoxicity by shielding potential Al binding sites and by reducing Al induced alterations in the CW cellulose and pectin components.


Assuntos
Alumínio/toxicidade , Boro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/metabolismo , Poncirus/fisiologia , Substâncias Protetoras/metabolismo , Poluentes do Solo/toxicidade , Parede Celular/metabolismo , Celulose , Citrus , Esterificação , Glucanos , Peróxido de Hidrogênio/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA