Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38581330

RESUMO

Objective: Metabolism, a basic need and biochemical process for cell survival and proliferation, is closely connected with the pathogenesis and progression of prostate cancer. Methods: A four-gene signature construct that includes CKM (CKM), CD38, Enoyl Coenzyme A(EHHADH), and Arginase 2(ARG2) was created by bioinformatics. Finally, hub genes were validated by IHC and in vitro experiments. Results: The results showed the AUCs of the logistic regression and neural networks diagnostic model for the diagnosis of two subtypes were 0.920 and 0.936, respectively. The risk score demonstrated by univariable and multivariable Cox analysis is an independent predictive component of the prognostic signature for DFS. According to immunohistochemical analyses, ARG2 and CD38 expression levels were considerably under-expressed, but CKM and EHHADH expression levels were significantly overexpressed. Furthermore, The expression of ARG2 was significantly down-regulated in the late Gleason score. Finally, we found that ARG2 is lowly expressed in prostate cancer cells. Furthermore, based on the effect of ARG2 on the malignant phenotype of PCa in vitro, we also found that ARG2 may be a tumor suppressor that plays an important role in inhibiting proliferation, migration, and invasion. Conclusions: These findings suggest that ARG2 has been tentatively identified as a new target for research into how PCa develops in metabolism and for the development of innovative targeted treatments.

2.
J Biol Chem ; 299(1): 102720, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410440

RESUMO

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Mitocôndrias , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral
3.
Cancer Res ; 80(11): 2150-2162, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179514

RESUMO

Metformin is an oral drug widely used for the treatment of type 2 diabetes mellitus. Numerous studies have demonstrated the value of metformin in cancer treatment. However, for metformin to elicit effects on cancer often requires a high dosage, and any underlying mechanism for how to improve its inhibitory effects remains unknown. Here, we found that low mRNA expression of glycerol-3-phosphate dehydrogenase 1 (GPD1) may predict a poor response to metformin treatment in 15 cancer cell lines. In vitro and in vivo, metformin treatment alone significantly suppressed cancer cell proliferation, a phenotype enhanced by GPD1 overexpression. Total cellular glycerol-3-phosphate concentration was significantly increased by the combination of GPD1 overexpression and metformin treatment, which suppressed cancer growth via inhibition of mitochondrial function. Eventually, increased reactive oxygen species and mitochondrial structural damage was observed in GPD1-overexpressing cell lines treated with metformin, which may contribute to cell death. In summary, this study demonstrates that GPD1 overexpression enhances the anticancer activity of metformin and that patients with increased GPD1 expression in tumor cells may respond better to metformin therapy. SIGNIFICANCE: GPD1 overexpression enhances the anticancer effect of metformin through synergistic inhibition of mitochondrial function, thereby providing new insight into metformin-mediated cancer therapy.


Assuntos
Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfatos/metabolismo , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células A549 , Trifosfato de Adenosina/biossíntese , Animais , Antineoplásicos/farmacologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Sinergismo Farmacológico , Glicerolfosfato Desidrogenase/biossíntese , Glicerolfosfato Desidrogenase/genética , Células HCT116 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Biomed Pharmacother ; 111: 1376-1382, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841452

RESUMO

Cancer-related fatigue (CRF) not only has a negative impact on work, daily activities and social relationships, but also be a predictor of cancer patients' survival. And it has no FDA-approved therapy. ShenQi FuZheng Injection (SFI) is clinically used for adjuvant treatment of lung cancer and gastric cancer. And we found that SFI can improve the incidence of CRF in patients with gastric cancer. However, its efficacy against CRF remains to be elucidated. In the present study we established a tumor-bearing mouse fatigue model, conducted the forced swim test (FST) and grip strength measurements to evaluate the therapeutic effect of SFI. Additionally, we detected inflammation and immune indicators. The result showed that SFI administration could reduce depressive-like behaviors in tumor-bearing mice and inhibit tumor growth. In addition, SFI might improve fatigue symptoms by inhibiting pro-inflammatory cytokines produced by peripheral immune cells, restrain the dysfunction of exhausted T cells and improve the anti-tumor immunity through the targets of PDL1, TIM3 and FOXP3. These data suggested that SFI might be useful in alleviating CRF and provide further support to confirm SFI as a potential therapy for CRF in humans.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fadiga/tratamento farmacológico , Fadiga/etiologia , Neoplasias Pulmonares/complicações , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Injeções/métodos , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/efeitos dos fármacos
5.
Biomed Res Int ; 2017: 4751780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147652

RESUMO

Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/química , Medicamentos de Ervas Chinesas/química , Moduladores de Transporte de Membrana/química , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa , Moduladores de Transporte de Membrana/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA