Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 103(4-5): 473-487, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32266647

RESUMO

KEY MESSAGE: CHR721 functions as a chromatin remodeler and interacts with a known single-stranded binding protein, OsRPA1a, to regulate both male and female reproductive development in rice. Reproductive development and fertility are important for seed production in rice. Here, we identified a sterile rice mutant, chr721, that exhibited defects in both male and female reproductive development. Approximately 5% of the observed defects in chr721, such as asynchronous dyad division, occurred during anaphase II of meiosis. During the mitotic stage, approximately 80% of uninucleate microspores failed to develop into tricellular pollen, leading to abnormal development. In addition, defects in megaspore development were detected after functional megaspore formation. CHR721, which encodes a nuclear protein belonging to the SNF2 subfamily SMARCAL1, was identified by map-based cloning. CHR721 was expressed in various tissues, especially in spikelets. CHR721 was found to interact with replication protein A (OsRPA1a), which is involved in DNA repair. The expressions of genes involved in DNA repair and cell-cycle checkpoints were consistently upregulated in chr721. Although numerous genes involved in male and female development have been identified, the mode of participation of chromatin-remodeling factors in reproductive development is still not well understood. Our results suggest that CHR721, a novel gene cloned from rice, plays a vital role in both male and female reproductive development.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Reprodução/genética , Sementes/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Cromossomos de Plantas , Clonagem Molecular , Reparo do DNA , Genes de Plantas/genética , Meiose , Oryza/embriologia , Oryza/crescimento & desenvolvimento , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Plantas Geneticamente Modificadas , Pólen/genética , Sementes/citologia , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA