Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Med ; 77(4): 677-687, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488321

RESUMO

Type I and III interferons (IFNs) both serve as pivotal components of the host antiviral innate immune system. Although they exert similar antiviral effects, type I IFNs can also activate neutrophil inflammation, a function not born by type III IFNs. Baicalin, the main bioactive component of Scutellariae radix, has been shown to exert therapeutic effects on viral diseases due to its anti-viral, anti-inflammatory and immunomulatory activities. There is uncertainty, however, on the association between the antiviral effects of baicalin and the modulation of anti-viral IFNs production and the immunological effects of type I IFNs. Here, a Poly (I:C)-stimulated A549 cell line was established to mimic a viral infection model. Our results demonstrated that baicalin could elevate the expression of type I and III IFNs and their receptors in Poly (I:C)-stimulated A549 cells. Moreover, the potential regulation effects of baicalin for type I IFN-induced neutrophil inflammation was further explored. Results showed that baicalin diminished the production of the pro-inflammatory cytokines (IL-1ß, IL-6, IL-17 and TNF-α), ROS, and neutrophil extracellular traps and suppressed chemotaxis. Collectively, all these data indicated that baicalin had a dual role on IFNs production and effects: (1) Baicalin was able to elevate the expression of type I and III IFNs and their receptors, (2) and it alleviated type I IFN-mediated neutrophil inflammatory response. This meant that baicalin has the potential to act as an eximious immunomodulator, exerting antiviral effects and reducing inflammation.


Assuntos
Antivirais , Interferon Tipo I , Humanos , Antivirais/farmacologia , Neutrófilos/metabolismo , Interferon Tipo I/metabolismo , Inflamação/tratamento farmacológico
2.
J Nat Med ; 75(4): 884-892, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120311

RESUMO

While the underlying mechanism remains unknown, Rubus chingii var. suavissimus (S. K. Lee) L. T. Lu or Rubus suavissimus S. Lee (RS), a sweet plant distributed in southwest of China, has been used as beverage and folk medicine. Pharmacological studies indicated the potential of RS improving the obesity phenotype and hyperlipidemia. The mechanism is still not yet to be put forward. To verify the substantial effects of RS on lipid metabolism, a Syrian golden hamster model was adopted. The physiological and pathological evaluation of experimental animals demonstrated that RS can relieve the lipid metabolism disorder induced by high-fat diet and alleviated liver injury. RS upregulation the expressions of peroxisome proliferator-activated receptor α (PPARα), PPARγ and CCAAT/enhancer binding protein α (C/EBPα), as well as adipocyte-specific genes, glucose transporter 4 (Glut4), lipoprotein lipase (LPL) and fatty acid binding protein 4 (aP2). On the other side, RS suppressed the sterol regulatory element binding protein 1 (SREBP1) and downstream acetyl-CoA carboxylase 1 (ACC1), stearoyl-CoA desaturase-1 (SCD1) and fatty acid synthase (FAS). In conclusion, RS alleviated lipid metabolism disorder symptoms caused by high-fat diet accompanied with 8 weeks of treatment, involving enhanced ß-oxidation, increased adipogenesis and decreased the metabolism of fatty acids, via modulation of the PPARs/SREBP pathway in Syrian golden hamsters.


Assuntos
Hiperlipidemias , Rubus , Animais , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Mesocricetus , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168894

RESUMO

Rubusoside is a natural sweetener and the active component of Rubus suavissimus. The preventive and therapeutic effect of rubusoside on high-fat diet-induced (HFD) serum metabolite changes in golden hamsters was analyzed by 1H-NMR metabolomics to explore the underlying mechanism of lipid metabolism regulation. 1H-NMR serum metabolomics analyses revealed a disturbed amino acid-, sugar-, fat-, and energy metabolism in HFD animals. Animals supplemented with rubusoside can partly reverse the metabolism disorders induced by high-fat diet and exerted good anti-hypertriglyceridemia effect by intervening in some major metabolic pathways, involving amino acid metabolism, synthesis of ketone bodies, as well as choline and 4-hydroxyphenylacetate metabolism. This study indicates that rubusoside can interfere with and normalize high-fat diet-induced metabolic changes in serum and could provide a theoretical basis to establish rubusoside as a potentially therapeutic tool able to revert or prevent lipid metabolism disorders.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Diterpenos do Tipo Caurano/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/farmacologia , Hiperlipidemias/prevenção & controle , Obesidade/prevenção & controle , Rubus/química , Aminoácidos/sangue , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Colina/sangue , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Hiperlipidemias/patologia , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Mesocricetus , Metabolômica/métodos , Obesidade/sangue , Obesidade/etiologia , Obesidade/patologia , Fenilacetatos/sangue
4.
Artigo em Inglês | MEDLINE | ID: mdl-32071609

RESUMO

The flavonoid dihydromyricetin (DMY) is the main component of Ampelopsis grossedentata (Hand-Mazz) W. T. Wang (AG), a daily beverage and folk medicine used in Southern China to treat jaundice hepatitis, cold fever, and sore throat. Recently, DMY and AG were shown to have a beneficial effect on lipid metabolism disorder. However, the mechanisms of how DMY and AG protect the liver during lipid metabolism disorder remain unclear. In this study, we first analyzed the chemical compounds of AG by HPLC-DAD-ESI-IT-TOF-MS n . Of the 31 compounds detected, 29 were identified based on previous results. Then, the effects of DMY and AG on high-fat diet hamster livers were studied and the metabolite levels and metabolic pathway activity of the liver were explored by 1H NMR metabolomics. Compared to the high-fat diet group, supplementation of AG and DMY attenuated the high-fat-induced increase in body weight, liver lipid deposition, serum triglycerides and total cholesterol levels, and normalized endogenous metabolite concentrations. PCA and PLS-DA score plots demonstrated that while the metabolic profiles of hamsters fed a high-fat diet supplemented with DMY or AG were both far from those of hamsters fed a normal diet or a high-fat diet alone, they were similar to each other. Our data suggest that the underlying mechanism of the protective effect of DMY and AG might be related to an attenuation of the deleterious effect of high-fat diet-induced hyperlipidemia on multiple metabolic pathways including amino acid metabolism, ketone body metabolism, energy metabolism, tricarboxylic acid cycle, and enhanced fatty acid oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA